
Flexible Cluster Computing: Dryad and
DryadLINQ

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Úlfar Erlingsson, Pradeep Kumar Gunda, Jon Currey,

Andrew Birrell

presented by Michael George

Distributed Storage Systems Seminar
April 2, 2009

Computing on Clusters

How to crunch lots of data?
I Explicit distribution

I Write it by hand
I Hard! failure, resource allocation, scheduling, . . .

I Implicit distribution
I MapReduce, DryadLINQ
I Easy! As long as your computation is expressible. . .

I Virtualized distribution
I Dryad
I In between. Programmer specifies data flow, system handles

details

Dryad Overview — Jobs

Dryad Job is a Directed Acyclic Graph

I Vertices are subcomputations

I Edges are data channels

I Graph is virtual — may be more or
fewer vertices than cluster nodes.

in.txt

distribute

sort

uniq

sort

uniq

sort

uniq

sort

uniq

count

out.txt

Dryad Overview — Execution

Centralized Job Manager distributes virtual graph to actual cluster

Files, TCP, FIFO

jobgraph data plane

control plane

NS PD PDPD

V V V

Job manager cluster

Writing Vertex Programs

I A Vertex Program is a class that extends the base VP class
I Base class provides typed I/O channels
I Specialized abstract subclasses available

I Map, Reduce, Distribute, . . .

I Special support for legacy executables
I grep, perl, legacyApp, . . .

I Asynchronous I/O API available for vertices that require it
I Runtime distinguishes asynch vertices, executes them

efficiently on thread pool

Composing Vertex Programs

Vertex programs are joined into graphs

I edges are local files by default

I can also be TCP pipes or in-memory FIFOs

Predefined operators for common composition patterns:

I Clone (G^n) ^3 =

I Merge (G1||G2) || =

I Pointwise composition (G1>=G2) >= =

I Bipartite composition (G1>>G2) >> =

Composing Vertex Programs

Vertex programs are joined into graphs

I edges are local files by default

I can also be TCP pipes or in-memory FIFOs

Predefined operators for common composition patterns:

I Clone (G^n) ^3 =

I Merge (G1||G2) || =

I Pointwise composition (G1>=G2) >= =

I Bipartite composition (G1>>G2) >> =

Composing Vertex Programs

Vertex programs are joined into graphs

I edges are local files by default

I can also be TCP pipes or in-memory FIFOs

Predefined operators for common composition patterns:

I Clone (G^n) ^3 =

I Merge (G1||G2) || =

I Pointwise composition (G1>=G2) >= =

I Bipartite composition (G1>>G2) >> =

Composing Vertex Programs

Vertex programs are joined into graphs

I edges are local files by default

I can also be TCP pipes or in-memory FIFOs

Predefined operators for common composition patterns:

I Clone (G^n) ^3 =

I Merge (G1||G2) || =

I Pointwise composition (G1>=G2) >= =

I Bipartite composition (G1>>G2) >> =

Composing Vertex Programs

Vertex programs are joined into graphs

I edges are local files by default

I can also be TCP pipes or in-memory FIFOs

Predefined operators for common composition patterns:

I Clone (G^n) ^3 =

I Merge (G1||G2) || =

I Pointwise composition (G1>=G2) >= =

I Bipartite composition (G1>>G2) >> =

Example Job

M S

M S

U M S

X D M S Y

N U

n n 4n 4n n n H out

U U

X D M S Y

N M S

M S

M S
((((U >= X) || (N >= X)) >= D)^n >> (((M >= S)^4 >> Y) || U >= Y)^n) >> H >= out

Running a Job

Vertices are instantiated on nodes

I May be multiple execution records due to failure
I Node placement handled by Job Manager

I Applications can specify locality “hints” or “requirements”
I Edge requirements may force vertices to co-locate

Job manager is notified of node transitions

I May rerun failed vertices

I Can rewrite the graph

I May run duplicate process to route around slow nodes

Callback Example: Dynamic Optimization

Client may not know size or distribution of data at load time

I Can dynamically rewrite the graph

A A A A A A

B B

C C C C

k

MapReduce in Dryad

So Far. . .

I Dryad provides a mid-level execution platform

I Good performance possible

I Flexibility
I But

I Data parallelization done by hand
I Optimization done by hand
I Unfamiliar programming style

DryadLINQ

LINQ (Language INtegrated Query)

I Standard .NET extenstion

I Embeds SQL-like operators into programming languages

I Developers can mix declarative, functional, and imperative
statements

DryadLINQ

I Compiles LINQ statements to run on Dryad

I Provides simple, flexible, efficient access to cluster computing

LINQ Example

v a r a d j u s t e d S c o r e T r i p l e s =
from d i n s c o r e T r i p l e s
j o i n r i n s t a t i c R a n k on d . docID e q u a l s r . key
s e l e c t new Q u e r y S c o r e D e c I D T r i p l e (d , r) ;

v a r r a n k e d Q u e r i e s =
from s i n a d j u s t e d S c o r e T r i p l e s
group s by s . q u e r y i n t o g
s e l e c t TakeTopQueryResults (g) ;

v a r a d j u s t e d S c o r e T r i p l e s =
s c o r e T r i p l e s . j o i n (s t a t i c R a n k ,

d => d . docID , r => r . key ,
(d , r) => new Q u e r y S c o r e D o c I D T r i p l e (d , r)) ;

v a r g r o u p e d Q u e r i e s =
a d j u s t e d S c o r e T r i p l e s . groupBy (s => s . q u e r y) ;

v a r r a n k e d Q u e r i e s =
g r o u p e d Q u e r i e s . s e l e c t (

g => TakeTopQueryResults (g)) ;

LINQ Example

v a r a d j u s t e d S c o r e T r i p l e s =
from d i n s c o r e T r i p l e s
j o i n r i n s t a t i c R a n k on d . docID e q u a l s r . key
s e l e c t new Q u e r y S c o r e D e c I D T r i p l e (d , r) ;

v a r r a n k e d Q u e r i e s =
from s i n a d j u s t e d S c o r e T r i p l e s
group s by s . q u e r y i n t o g
s e l e c t TakeTopQueryResults (g) ;

v a r a d j u s t e d S c o r e T r i p l e s =
s c o r e T r i p l e s . j o i n (s t a t i c R a n k ,

d => d . docID , r => r . key ,
(d , r) => new Q u e r y S c o r e D o c I D T r i p l e (d , r)) ;

v a r g r o u p e d Q u e r i e s =
a d j u s t e d S c o r e T r i p l e s . groupBy (s => s . q u e r y) ;

v a r r a n k e d Q u e r i e s =
g r o u p e d Q u e r i e s . s e l e c t (

g => TakeTopQueryResults (g)) ;

DryadLINQ Constructs

Types:
IEnumerable<T>

IQueryable<T>

DryadTable<T>

NTFS GFS SQL Table

Data Partitioning Operators:

I HashPartition<T,K>

I RangePartition<T,K>

Escape Hatches:

I Apply (f)

I Fork (f)

Execution Overview

Client machine

Compile
Output

DryadTable

ToDryadTable foreach

DryadLINQ

.NET

Output
Tables

Input
tables

Exec
plan

Dryad
Execution

Data center

Results

.NET
Objects

LINQ
Expr

JM

Invoke

Vertex
code

Execution Details

1. LINQ expression is compiled to an Execution Plan Graph
I EPG is a skeleton of a job

2. EPG is optimized using term rewriting
I Pipelining added
I Redundancy redundancy removed
I Aggregation made eager
I TCP/FIFO annotations added where possible

3. Code Generated
I Partially evaluated LINQ subexpressions
I Serialization code

4. Dynamically, EPG is executed by DryadLINQ job manager
I vertices replicated to match data
I dynamic optimizations automated
I vertices use local LINQ execution engines (e.g. PLINQ)

Execution Details

1. LINQ expression is compiled to an Execution Plan Graph
I EPG is a skeleton of a job

2. EPG is optimized using term rewriting
I Pipelining added
I Redundancy redundancy removed
I Aggregation made eager
I TCP/FIFO annotations added where possible

3. Code Generated
I Partially evaluated LINQ subexpressions
I Serialization code

4. Dynamically, EPG is executed by DryadLINQ job manager
I vertices replicated to match data
I dynamic optimizations automated
I vertices use local LINQ execution engines (e.g. PLINQ)

Execution Details

1. LINQ expression is compiled to an Execution Plan Graph
I EPG is a skeleton of a job

2. EPG is optimized using term rewriting
I Pipelining added
I Redundancy redundancy removed
I Aggregation made eager
I TCP/FIFO annotations added where possible

3. Code Generated
I Partially evaluated LINQ subexpressions
I Serialization code

4. Dynamically, EPG is executed by DryadLINQ job manager
I vertices replicated to match data
I dynamic optimizations automated
I vertices use local LINQ execution engines (e.g. PLINQ)

Execution Details

1. LINQ expression is compiled to an Execution Plan Graph
I EPG is a skeleton of a job

2. EPG is optimized using term rewriting
I Pipelining added
I Redundancy redundancy removed
I Aggregation made eager
I TCP/FIFO annotations added where possible

3. Code Generated
I Partially evaluated LINQ subexpressions
I Serialization code

4. Dynamically, EPG is executed by DryadLINQ job manager
I vertices replicated to match data
I dynamic optimizations automated
I vertices use local LINQ execution engines (e.g. PLINQ)

MapReduce on DryadLINQ
p u b l i c s t a t i c MapReduce (source , mapper , k e yS e l e c t o r , r e du c e r) {

va r mapped = sou r c e . s e l ec tMany (mapper) ;
va r g roups = mapped . groupBy (k e y S e l e c t o r) ;
r e t u r n groups . s e l ec tMany (r e du c e r) ;

}

SM

R

G

SM

S

G

R

D

MS

G

R

(1) (2) (3)

X

X

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

MS

G

R

MS

G

R

map

sort

groupby

reduce

distribute

mergesort

groupby

reduce

mergesort

groupby

reduce

consumer

m
ap

pa
rt

ia
l a

gg
re

ga
tio

n
re

du
ce

Scalability Evaluation — TeraSort

50

100

150

200

250

300

350

0

0Gb

50

208Gb

100

416Gb

150

624Gb

200

832Gb

240

1000Gb

Machines:

Data:

E
xe

cu
ti

on
T

im
e

319s

Overhead Evaluation — SkyServer

5

10

15

20

25

0 5 10 15 20 25 30 35 40

Machines

S
p

ee
d

u
p

Dryad Two-pass

SQL Server

Dryad In-memory

DryadLINQ

Conclusions and Discussion

Dryad meets its goals:

I efficient

I flexible

I programmable

DryadLINQ builds on Dryad:

I almost as efficient

I concise

I familiar

