GFS: The Google File System

Michael Siegenthaler
Cornell Computer Science

CS 6464
10th March 2009

Motivating Application: Search

e Crawl the whole web

e Store it all on
“one big disk”

e Process users’ searches
on “one big CPU"

*$5HHS

e Doesn’t scale

T P

- - we

) R e e -
AL S P P -

- i s el

Google Platform Characteristics

e Lots of cheap PCs, each with disk and CPU
—High aggregate storage capacity

—Spread search processing across many
CPUs

e How to share data among PCs?

Google Platform Characteristics

e 100s to 1000s of PCs in cluster

e Many modes of failure for each PC:
— App bugs, OS bugs
— Human error

— Disk failure, memory failure, net failure,
bower supply failure

— Connector failure

e Monitoring, fault tolerance, auto-recovery
essential

— .
S, -

-
-

o, — »\ -
- A
- >
s — "
: "

\V‘..r-"l -
‘ _.l.‘

’ }1‘1‘1“_“ g

e

P
B >

Google File System: Design Criteria

Detect, tolerate, recover from failures
automatically

Large files, >= 100 MB in size
Large, streaming reads (>= 1 MB in size)
— Read once

Large, sequential writes that append

— Write once

Concurrent appends by multiple clients (e.q.,
producer-consumer queues)

— Want atomicity for appends without synchronization
overhead among clients

GFS: Architecture

e One master server (state replicated on
backups)

e Many chunk servers (100s — 1000s)

— Spread across racks; intra-rack b/w greater
than inter-rack

— Chunk: 64 MB portion of file, identified by 64-
bit, globally unique ID

e Many clients accessing same and different
files stored on same cluster

GFS: Architecture (2)

Application | . -
ppHIce " (file name, chunk index) GFS master - /foo/bar .
GFS client - . File namespace chunk 2ef0
(chunk handle, /
chunk locations ’
) Legend:
mmm) Data messages
A . A .
Instructions to chunkserver = Control messages
Chunkserver state
(chunk handle, byte range) 1Y Y
GFS chunkserver GFS chunkserver
chunk data ') . ‘ . N
Linux file system Linux file system

Figure 1: GFS Architecture

10

Master Server

e Holds all metadata:
— Namespace (directory hierarchy)

r

.

Holds all metadata in RAM; very fast
operations on file system metadata

— Current locations of chunks (chunkservers)
e Delegates consistency management
e Garbage collects orphaned chunks
e Migrates chunks between chunkservers

Chunkserver

e Stores 64 MB file chunks on local disk
using standard Linux filesystem, each with
version number and checksum

e Read/write requests specify chunk handle
and byte range

e Chunks replicated on configurable number
of chunkservers (default: 3)

e No caching of file data (beyond standard
Linux buffer cache)

12

Client

e Issues control (metadata) requests to
master server

e Issues data requests directly to
chunkservers

e Caches metadata

e Does no caching of data
— No consistency difficulties among clients

— Streaming reads (read once) and append
writes (write once) don't benefit much from
caching at client

13

Client API

e Not a filesystem in traditional sense
— Not POSIX compliant
— Does not use kernel VFS interface

— Library that apps can link in for storage
access

o API:
— open, delete, read, write (as expected)
— snapshot: quickly create copy of file

—append: at least once, possibly with gaps
and/or inconsistencies among clients

14

Client Read

Client sends master:

— read(file name, chunk index)

Master’s reply:

— chunk ID, chunk version number, locations of replicas
Client sends “closest” chunkserver w/replica:

— read(chunk ID, byte range)

— “Closest” determined by IP address on simple rack-
based network topology

Chunkserver replies with data

15

Client Write

e Some chunkserver is primary for each chunk

— Master grants lease to primary (typically for 60 sec.)
— Leases renewed using periodic heartbeat messages
between master and chunkservers

e Client asks master for primary and secondary
replicas for each chunk
e Client sends data to replicas in daisy chain

— Pipelined: each replica forwards as it receives
— Takes advantage of full-duplex Ethernet links

16

Client Write (2)

4 stepl
o Client | | Master

Secondary (=
Replica A
ep llCd ¢

! Primary 5

"I Replica -

l Legend
6 Control

Secondary —) Data
ReplicaB |f«——-

Figure 2: Write Control and Data Flow

17

Client Write (3)

All replicas acknowledge data write to client
Client sends write request to primary

Primary assigns serial number to write request,
oroviding ordering

Primary forwards write request with same serial
number to secondaries

Secondaries all reply to primary after completing
write

Primary replies to client

18

Client Record Append

Google uses large files as queues between
multiple producers and consumers

Same control flow as for writes, except...

Client pushes data to replicas of last chunk of
file
Client sends request to primary

Common case: request fits in current last chunk:
— Primary appends data to own replica

— Primary tells secondaries to do same at same byte
offset in theirs

— Primary replies with success to client

19

Client Record Append (2)

e When data won't fit in last chunk:
— Primary fills current chunk with padding
— Primary instructs other replicas to do same
— Primary replies to client, “retry on next chunk”
o If record append fails at any replica, client
retries operation

— So replicas of same chunk may contain different data
—even duplicates of all or part of record data

e What guarantee does GFS provide on
success?

— Data written at least once in atomic unit

20

GFS: Consistency Model

e Changes to namespace (i.e., metadata) are
atomic
— Done by single master server!

— Master uses log to define global total order of
namespace-changing operations

21

GFS: Consistency Model (2)

e Changes to data are ordered as chosen by a
primary
— All replicas will be consistent

— But multiple writes from the same client may be
interleaved or overwritten by concurrent operations
from other clients

e Record append completes at least once, at
offset of GFS’s choosing

— Applications must cope with possible
duplicates

22

GFS: Data Mutation Consistency

Write Record Append
serial defined
success defined
concurrent | consistent mtienrcs:gﬁg?sicelr\:}c”th
success but
undefined

failure

Inconsistent

23

Applications and
Record Append Semantics

o Applications should use self-describing
records and checksums when using
Record Append

— Reader can identify padding / record
fragments

e If application cannot tolerate duplicated
records, should include unique ID in
record

— Reader can use unique IDs to filter duplicates

24

Logging at Master

e Master has all metadata information
— Lose it, and you‘ve lost the filesystem!

e Master logs all client requests to disk
sequentially

e Replicates log entries to remote backup
servers

e Only replies to client after log entries safe
on disk on self and backups!

25

Chunk Leases and Version Numbers

e If no outstanding lease when client
requests write, master grants new one

e Chunks have version numbers

— Stored on disk at master and chunkservers

— Each time master grants new lease,
increments version, informs all replicas

e Master can revoke leases

—e.g., when client requests rename or snapshot
of file

26

What If the Master Reboots?

e Replays log from disk
— Recovers namespace (directory) information
— Recovers file-to-chunk-ID mapping

e Asks chunkservers which chunks they hold
— Recovers chunk-ID-to-chunkserver mapping

o If chunk server has older chunk, it's stale
— Chunk server down at lease renewal

o If chunk server has newer chunk, adopt its
version humber
— Master may have failed while granting lease

27

What if Chunkserver Fails?

e Master notices missing heartbeats

e Master decrements count of replicas for all
chunks on dead chunkserver

e Master re-replicates chunks missing
replicas in background

— Highest priority for chunks missing greatest
number of replicas

28

File Deletion

e \When client deletes file:

— Master records deletion in its log
— File renamed to hidden name including deletion
timestamp
e Master scans file namespace in background:

— Removes files with such names if deleted for longer
than 3 days (configurable)

— In-memory metadata erased

e Master scans chunk namespace in background:

— Removes unreferenced chunks from chunkservers

29

Limitations

e Security?
— Trusted environment, trusted users

— But that doesn’t stop users from interfering
with each other...

e Does not mask all forms of data corruption
— Requires application-level checksum

30

Cluster A B

Chunkservers 342 227

Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 Lk | 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB 60 MB

Table 2: Characteristics of two GF'S clusters

31

Cluster A B

Read rate (last minute) 583 MB/s | 380 MB/s
Read rate (last hour) 562 MB/s | 384 MB/s
Read rate (since restart) 589 MB/s | 49 MB/s
Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s | 533 Ops/s
Master ops (last hour) 381 Ops/s | 518 Ops/s
Master ops (since restart) 202 Ops/s | 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

32

Cluster X Y
Open 26.1 16.3
Delete 0.7 1.5
FindLocation 64.3 65.8
FindLeaseHolder 7.8 13.4
FindMatchingFiles 0.6 2.2
All other combined 0.5 0.8

Table 6: Master Requests Breakdown by Type (%)

33

. Network limit
@100_
3z .
Z
L
= .
- 504 A t d
S | goregate read rate
a'%
0 — T 1 T 1 T
0 5 10 15

Number of clients N

(a) Reads

34

A
-
l

N
-
|

Write rate (MB/s)

)
-

Network limit

Number of clients N

(b) Writes .

Append rate (MB/s)

[—
-
[l I 1

N
N

Network limit

Aggregate append rate

(for a single file)

5 10 15
Number of clients N

(c) Record appends 5

Recovery Time

e Experiment: killed 1 chunkserver

— Clonings limited to 40% of the chunkservers
and 50 Mbps each to limit impact on
applications

— All chunks restored in 23.2 min

e Experiment: killed 2 chunkservers
— 266 of 16,000 chunks reduced to single
replica
— Higher priority re-replication for these chunks
— Achieved 2x replication within 2 min

37

Operation Read Write Record Append
Cluster X Y X Y X Y
OK 0.4 2.6 0O 0 0 0
1B..1K 0.1 4.1 6.6 4.9 0.2 9.2
1K..8K 65.2 38.5 0.4 1.0 | 18.9 15.2
SK..64K 29.9 45.1 | 17.8 43.0 | 78.0 2.8
64K.. 128K 0.1 0.7 2.3 1.9]| < .1 4.3
128K..256K 0.2 03] 316 04] < .1 10.6
256K..512K 0.1 0.1 4.2 7.7 | < .1 31.2
512K..1M 3.9 6.9 | 35.5 28.7 2.2 25.5
1M..inf 0.1 1.8 1.5 12.3 0.7 2.2

Table 4: Operations Breakdown by Size (%). For
reads, the size is the amount of data actually read and trans-
ferred, rather than the amount requested.

38

Operation Read Write Record Append
Cluster X Y X Y X Y
1B..1K < I<l]<I<I]< 1 < .1
1K..8K 13.8 39 | <1< | <1 0.1
S8K..64K 11.4 9.3 2.4 5.9 2.3 0.3
64K..128K 0.3 0.7 0.3 0.3] 22.7 1.2
128K..256K 0.8 0.6] 165 0.2]| < .1 5.8
256K..512K 1.4 0.3 3.4 7.7 <.1 38.4
512K.. 1M 65.9 55.1 | 74.1 58.0 1 46.8
1M..inf 6.4 30.1 3.3 28.0 | 53.9 7.4

Table 5: Bytes Transferred Breakdown by Opera-
tion Size (%). For reads, the size is the amount of data
actually read and transferred, rather than the amount re-
quested. The two may differ if the read attempts to read
beyond end of file, which by design is not uncommon in our
workloads.

3Y

GFS: Summary

e Success: used actively by Google to support
search service and other applications
— Availability and recoverability on cheap hardware
— High throughput by decoupling control and data
— Supports massive data sets and concurrent appends

e Semantics not transparent to apps

— Must verify file contents to avoid inconsistent regions,
repeated appends (at-least-once semantics)

e Performance not good for all apps

— Assumes read-once, write-once workload (no client
caching!)

40

