TensorFlow: A System for Learning-Scale Machine Learning

Google Brain
The Problem

- Machine learning is everywhere
- This is in large part due to:
 1. Invention of more sophisticated machine learning models
 2. Availability of large datasets to solve problems
 3. Development of software platforms for training such models on these datasets
- Development of scalable and flexible machine learning systems can have wide-ranging impact
- TensorFlow is (the 2016) solution from Google Brain
The Problem

- TensorFlow is a system that allows users to experiment with new models, train them on large datasets, and move them into production.
- Successor to popular DistBelief (first generation distributed training and inference system) but varies in some meaningful ways.
- Unifies computation and state in a single dataflow graph (more on this).
- Seamless design and deployment for heterogeneous clusters comprising CPU, GPU.
Why is the Problem Interesting?

- Good solutions to this problem can have wide-ranging impact
 - Rise of devices better suited to machine learning computation such as GPUs, which result in heterogeneous clusters (traditional systems do not handle this well)
 - More complex learning algorithms such as RNN and reinforcement learning are not served well under existing infrastructure

- Upon release a large number of groups at Google deployed TensorFlow in production

- It was released as an open-source software
 - Over 14,000 people have forked the source code repository
 - The binary distribution has been downloaded over one million times
 - Dozens of machine learning models that use TensorFlow have been published
Just How Interesting?
Related Work: Limitations of DistBelief

- Based off the first-generation system: DistBelief (2011-2016), which had some issues
- *Layers*: Python based scripting interface for composing pre-defined layers, but layers are C++ classes. Experimenting with new layers was hard
- *Optimization Techniques*: experimenting with optimization methods outside of SGD is not easy and might not work well
- *NN structures*: Fixed execution pattern that works for simple feed-forward neural nets but fails for more advanced models (e.g, recurrent neural nets due to loops)
- *Heterogeneity*: DistBelief is not geared towards this.
Related Work: Other Frameworks

● **Single machine framework:**
 ○ Caffe programming model is similar to DistBelief and so shares a lot of the inflexibility issues
 ○ Torch allows fine-grained control over the execution order and memory utilization, but doesn’t use dataflow graph

● **Batch dataflow systems:** e.g, MapReduce and improvements for machine learning algorithms
 ○ Require the input data to be immutable and all of the subcomputation to be deterministic
 ○ This makes updating a machine learning model an expensive operation
Related Work: Parameter Servers

- **Parameter servers**: this architecture meets many of the requirements
- MXNet is possibly the closest system in design to TensorFlow and even uses dataflow graphs
- Takes engineering effort to build the desired features into a parameter server
- What are the benefits of TensorFlow over parameter server? Why build a new system?
Technical Contribution: TensorFlow Building Blocks

- Uses a single dataflow graph to represent all computation and state in a machine learning algorithm

Figure 2: A schematic TensorFlow dataflow graph for a training pipeline, containing subgraphs for reading input data, preprocessing, training, and checkpointing state.
Building Blocks

- Vertex represents a unit of local computation and edge represents the output from or input to a vertex.

- *Operations* are the computations at vertices and *tensors* are values across the edges
 - Tensors represent the inputs to and results of common operations such as matrix multiplication
 - Operations take tensors as input and produce tensors as output. They can have mutable state that is read and/or written each time it is executed (advantages to this to be discussed)

- Simplifies distributed execution by making subcomputation communication explicit
Building Blocks

- Departing from traditional dataflow systems where graph vertices represent functional computation on immutable data,
 - the TensorFlow graph vertices may have mutable state that can be shared between different executions of the graph
 - Model supports multiple concurrent executions on overlapping subgraphs of the overall graph
- Unifying computation and state management allows programmers to experiment with parallelization schemes, optimizers, consistency schemes, etc
- Allows for partial and concurrent execution during training
Distributed Execution

- Each operation resides on a device in a particular task
- A device is responsible for executing a kernel for each operation assigned to it
- The placement algorithm places operation on device subject to constraints in the graph
- Once operation is places on a device, TensorFlow partitions the operations into per-device subgraphs
- TensorFlow is optimized for executing large subgraphs repeatedly with low latency
Dynamic Control Flow

- TensorFlow should support advanced machine learning algorithms, e.g., RNN
- Core of RNN is a recurrent relation, where the output for sequence element i is a function of some state that accumulates across the sequence
- Dynamic control flow enables iteration over sequences that have variable lengths, without unrolling the computation to the length of the longest sequence
- It does so by adding conditional and iterative programming constructs in the dataflow graph itself
 - Execution of iterations can overlap and TensorFlow can partition conditional branches and loop bodies across multiple devices and processes for efficiency
Fault Tolerance

- Fault tolerance: long-running jobs are likely to experience failure or pre-emption without adding too much overhead since failure might be rare
- Client library allows to construct appropriate graph structure and use save and restore for user-level checkpointing for fault tolerance
- This is customizable so the user can implement it as necessary and apply different checkpoints for different subsets of the graph
- Thoughts?
(A)synchrony

- Synchronous replica coordination: originally designed for asynchronous training, but have been experimenting with synchronous methods.

Figure 5: Three synchronization schemes for parallel SGD. Each color represents a different starting parameter value; a white square is a parameter update. In (c), a dashed rectangle represents a backup worker whose result is discarded.
Evaluation

- They evaluate TensorFlow on both image classification and language modeling.
- They find that TensorFlow has less overhead, is scalable and flexible.
When might it fail

- Flexibility as a curse: develop default policies that work well for all users (e.g., automatic optimization)
- Similarly, this heterogeneous resource utilization can add complexity, limiting usability
- TensorFlow tries to allocate all available GPU memory, and that can be undesirable
When might it fail

- Conflicts with already existing systems such as Theano (can compete for memory allocation)

- “some users have begun to chafe at the limitations of a static dataflow graph, especially for algorithms like deep reinforcement learning. Therefore, we face the intriguing problem of providing a system that transparently and efficiently uses distributed resources, even when the structure of the computation unfolds dynamically”
Future Work

- Large scale involvement and collaboration, as discussed above, will lead to fast improvement which has already been observed (e.g., multi-GPU support, graph visualization)

- Not clear what the benefits of TensorFlow are?

- Support for more complex settings
 - RNN support is lacking compared to Theano, easy gap to bridge
 - Support for reinforcement learning is weaker. Perhaps a system specifically for reinforcement learning
Future Work

- Some new research suggests that synchronous training might be faster, so more experimentation there. Called “promising result” in this paper.
- Can have a system learn how to make a good device placement decision (using deep neural nets or reinforcement learning) [Mao et al, ‘16].
- Likewise automation of memory management and optimization technique.
- Fault tolerance is left completely to the user, which might be an issue with new users, and automatic placement of checkpoints can be helpful.
Future Work

● **Real-time support** (similar to robotics, self-driving cars), would be a great contribution
 ○ Can systems such as TensorFlow and parameter servers support these applications or do we need to design a new system?

● Fitting large ML models into *hand-held devices*, which are ubiquitous, is a challenge
 ○ There are interesting machine learning challenges to shrinking huge models. What systems techniques can help with this?
 ○ Can you run inference on a compressed neural network on your phone? How would that work?
Future Work

Thoughts from the group

(Johan)