CS 6453: Parameter Server

Soumya Basu
March 7, 2017
What is a Parameter Server?

- Server for large scale machine learning problems
- Machine learning tasks in a nutshell:
 - Feature Extraction
 - Training
 - Design a server that makes the above fast!
Why Now?

• Machine learning is important!
 • Read the news to see why…
• Feature extraction fits nicely into Map-Reduce
 • Many systems take care of this problem…
• So, parameter server focuses on training models
Training in ML

• Training consists of the following steps:

1. Initialize model with small random values
2. Try to guess the right answer for your input set
3. Adjust the model
4. Repeat step 2-3 until your error is small enough
Systems view of Training

- Initialize model with small random values
 - Paid once- fairly trivial to parallelize
- Try to guess the right answer for your input set
 - Iterate through the input set many many times
- Adjust the model
 - Send a small update to the model parameters
Three main challenges of implementing a parameter server:

- Accessing parameters requires lots of network bandwidth
- Training is sequential and synchronization is hard to scale
- Fault tolerance at scale (~25% failure rate for 10k machine-hour jobs)
First Attempts

• First attempts used memcached for synchronization [VLDB 2010]

• Key-value stores have very large overheads

• Synchronization costs are expensive and not always necessary
Second Generation

- Second generation of attempts were application specific parameter servers [WDSM 2012, NIPS 2012, NIPS 2013]

- Fails to factor out common difficulties between many different types of problems

- Difficult to deploy multiple algorithms in parallel
• General purpose machine-learning frameworks
 • Many have synchronization points -> difficult to scale
 • Key observation: cache state between iterations
GraphLab

- Distributed GraphLab [PVLDB 2012]
 - Uses coarse-grained snapshots for fault tolerance, impeding scalability
 - Doesn’t scale elastically like map-reduce frameworks
 - Asynchronous task scheduling is the main contribution
Piccolo

- Piccolo [OSDI 2010]
 - Most similar to this paper
 - Is not optimized for Machine Learning though
Technical Contribution

• Recall the three main challenges:
 • Accessing parameters requires lots of network bandwidth
 • Training is sequential and synchronization is hard to scale
 • Fault tolerance at scale
• What are parameters of a ML model?
 • Usually an element of a vector, matrix, etc.
 • Need to do lots of linear algebra operations
• Introduce new constraint: ordered keys
 • Typically some index into a linear algebra structure
Dealing with Parameters

• What are parameters of a ML model?
 • Usually an element of a vector, matrix, etc.
 • Need to do lots of linear algebra operations
• Introduce new constraint: ordered keys
 • Typically some index into a linear algebra structure
Dealing with Parameters

- High model complexity leads to overfitting
 - Updates don’t touch many parameters
- Range push-and-pull: Can update a range of values in a row instead of single key
- When sending ranges, use compression
Synchronization

• ML models try to find a good local min/min

• Need updates to be *generally* in the right direction

• Not important to have strong consistency guarantees all the time

• Parameter server introduces Bounded Delay
Fault Tolerance

• Server stores all state, workers are stateless
 • However, workers cache state across iterations
• Keys are replicated for fault tolerance
• Jobs are rerun if a worker fails
Figure 9: Convergence of sparse logistic regression. The goal is to minimize the objective rapidly.
Evaluation

Figure 13: Time a worker spent to achieve the same convergence criteria by different maximal delays.

Figure 10: Time per worker spent on computation and waiting during sparse logistic regression.
Limitations

• Evaluation was done on specially designed ML algorithms
 • Distributed regression and distributed gradient descent
 • How fast is it on a sequential algorithm?
 • Count-Min Sketch is trivially parallelizable
• No neural networks evaluated?
Future Work

• What happens to sequential ML algorithms?

• Synchronization cost ignored, rather than resolved
 • Where are the bottlenecks of synchronization?
 • Lots of waiting time, but on what resource(s)?