CS 6453
Network Fabric
Presented by Ayush Dubey

Based on:

3. Benson’s original slide deck from IMC10.
Example – Facebook’s Graph Store Stack

Source: https://www.facebook.com/notes/facebook-engineering/tao-the-power-of-the-graph/10151525983993920/
Example - MapReduce

Source: https://blog.sqlauthority.com/2013/10/09/big-data-buzz-words-what-is-mapreduce-day-7-of-21/
Performance of distributed systems depends heavily on the datacenter interconnect
Evaluation Metrics for Datacenter Topologies

• Diameter – max #hops between any 2 nodes
 • Worst case latency

• Bisection Width – min #links cut to partition network into 2 equal halves
 • Fault tolerance

• Bisection Bandwidth – min bandwidth between any 2 equal halves of the network
 • Bottleneck

• Oversubscription – ratio of worst-case achievable aggregate bandwidth between end-hosts to total bisection bandwidth
Legacy Topologies

Ring Mesh Star Fully Connected
Line Tree Bus

3-Tier Architecture

Source: CS 5413, Hakim Weatherspoon, Cornell University
Big-Switch Architecture

Cost $O(100,000)$!

Cost $O(1,000)$!

Figure 2: A traditional 2Tbps four-post cluster (2004). Top of Rack (ToR) switches serving 40 1G-connected servers were connected via 1G links to four 512 1G port Cluster Routers (CRs) connected with 10G sidelinks.

Source: Jupiter Rising, Google
Goals for Datacenter Networks (circa 2008)

• 1:1 oversubscription ratio – all hosts can communicate with arbitrary other hosts at full bandwidth of their network interface
 • Google’s Four-Post CRs offered only about 100Mbps

• Low cost – cheap off-the-shelf switches

Source: A Scalable, Commodity Data Center Network Architecture. Al-Fares et al.
Fat-Trees

Advantages of Fat-Tree Design

• Increased throughput between racks
• Low cost because of commodity switches
• Increased redundancy
Case Study: The Evolution of Google’s Datacenter Network

(Figures from original paper)
Google Datacenter Principles

• High bisection bandwidth and graceful fault tolerance
 • Clos/Fat-Tree topologies
• Low Cost
 • Commodity silicon
• Centralized control
Firehose 1.0

• Goal – 1Gbps bisection bandwidth to each 10K servers in datacenter

Figure 5: Firehose 1.0 topology. Top right shows a sample 8x10G port fabric board in Firehose 1.0, which formed Stages 2, 3 or 4 of the topology.
Firehose 1.0 – Limitations

• Low radix (#ports) ToR switch easily partitions the network on failures

• Attempted to integrate switching fabric into commodity servers using PCI
 • No go, servers fail frequently

• Server to server wiring complexity

• Electrical reliability
Firehose 1.1 – First Production Fat-Tree

- Custom enclosures with dedicated single-board computers
 - Improve reliability compared to regular servers
- Buddy two ToR switches by interconnecting
 - At most 2:1 oversubscription
 - Scales up to 20K machines
- Use fiber rather than Ethernet for longest distances (ToR to above)
 - Workaround 14m CX4 cable limit improves deployability
- Deployed on the side with legacy four-post CR
Watchtower

• Goal – leverage next-gen 16X10G merchant silicon switch chips
• Support larger fabrics with more bandwidth
• Fiber bundling reduces cable complexity and cost

Figure 10: Reducing deployment complexity by bundling cables. Stages 1, 2 and 3 in the fabric are labeled S1, S2 and S3, respectively.
Watchtower – Depopulated Clusters

• Natural variation in bandwidth demands across clusters
• Dominant fabric cost is optics and associated fiber
• A is twice as cost-effective as B

Figure 11: Two ways to depopulate the fabric for 50% capacity.
Saturn and Jupiter

- Better silicon gives higher bandwidth
- Lots of engineering challenges detailed in the paper
Software Control

• Custom control plane
 • Existing protocols did not support multipath, equal-cost forwarding
 • Lack of high quality open source routing stacks
 • Protocol overhead of running broadcast-based algorithms on such large scale
 • Easier network manageability

• Treat the network as a single fabric with O(10,000) ports

• Anticipated some of the principles of Software Defined Networking
Issues – Congestion

High congestion as utilization approached 25%

• Bursty flows
• Limited buffer on commodity switches
• Intentional oversubscription for cost saving
• Imperfect flow hashing
Congestion – Solutions

- Configure switch hardware schedulers to drop packets based on QoS
- Tune host congestion window
- Link-level pause reduces over-running oversubscribed links
- Explicit Congestion Notification
- Provision bandwidth on-the-fly by repopulating
- Dynamic buffer sharing on merchant silicon to absorb bursts
- Carefully configure switch hashing to support ECMP load balancing
Issues – Control at Large Scale

• Liveness and routing protocols interact badly
 • Large-scale disruptions
 • Required manual interventions

• We can now leverage many years of SDN research to mitigate this!
 • E.g. consistent network updates addressed in “Abstractions for Network Update” by Reitblatt et al.
Google Datacenter Principles – Revisited

• High bisection bandwidth and graceful fault tolerance
 • Clos/Fat-Tree topologies

• Low Cost
 • Commodity silicon

• Centralized control
Do real datacenter workloads match these goals?

(Disclaimer: following slides are adapted from Benson’s slide deck)
The Case for Understanding Data Center Traffic

- Better understanding \rightarrow better techniques
- Better traffic engineering techniques
 - Avoid data losses
 - Improve app performance
- Better Quality of Service techniques
 - Better control over jitter
 - Allow multimedia apps
- Better energy saving techniques
 - Reduce data center’s energy footprint
 - Reduce operating expenditures
- Initial stab \rightarrow network level traffic + app relationships
Canonical Data Center Architecture
Dataset: Data Centers Studied

- 10 data centers
- 3 classes
 - Universities
 - Private enterprise
 - Clouds
- Internal users
 - Univ/priv
 - Small
 - Local to campus
- External users
 - Clouds
 - Large
 - Globally diverse

<table>
<thead>
<tr>
<th>DC Role</th>
<th>DC Name</th>
<th>Location</th>
<th>Number Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universities</td>
<td>EDU1</td>
<td>US-Mid</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>EDU2</td>
<td>US-Mid</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>EDU3</td>
<td>US-Mid</td>
<td>11</td>
</tr>
<tr>
<td>Private Enterprise</td>
<td>PRV1</td>
<td>US-Mid</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>PRV2</td>
<td>US-West</td>
<td>100</td>
</tr>
<tr>
<td>Commercial Clouds</td>
<td>CLD1</td>
<td>US-West</td>
<td>562</td>
</tr>
<tr>
<td></td>
<td>CLD2</td>
<td>US-West</td>
<td>763</td>
</tr>
<tr>
<td></td>
<td>CLD3</td>
<td>US-East</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>CLD4</td>
<td>S. America</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>CLD5</td>
<td>S. America</td>
<td>427</td>
</tr>
</tbody>
</table>
Dataset: Collection

- **SNMP**
 - Poll SNMP MIBs
 - Bytes-in/bytes-out/discard
 - > 10 Days
 - Averaged over 5 mins

- **Packet Traces**
 - Cisco port span
 - 12 hours

- **Topology**
 - Cisco Discovery Protocol
Canonical Data Center Architecture

- Core (L3)
- Aggregation (L2)
- Edge (L2)
- Top-of-Rack
- Application servers

SNMP & Topology From ALL Links
Packet Sniffers
Topologies

<table>
<thead>
<tr>
<th>Datacenter</th>
<th>Topology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDU1</td>
<td>2-Tier</td>
<td>Middle-of-Rack switches instead of ToR</td>
</tr>
<tr>
<td>EDU2</td>
<td>2-Tier</td>
<td></td>
</tr>
<tr>
<td>EDU3</td>
<td>Star</td>
<td>High capacity central switch connecting racks</td>
</tr>
<tr>
<td>PRV1</td>
<td>2-Tier</td>
<td></td>
</tr>
<tr>
<td>PRV2</td>
<td>3-Tier</td>
<td></td>
</tr>
<tr>
<td>CLD</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>
Applications

• Start at bottom
 • Analyze running applications
 • Use packet traces

• BroID tool for identification
 • Quantify amount of traffic from each app
Applications

• Cannot assume uniform distribution of applications
• Clustering of applications
 • PRV2_2 hosts secured portions of applications
 • PRV2_3 hosts unsecure portions of applications
Analyzing Packet Traces

- Transmission patterns of the applications
- Properties of packet crucial for
 - Understanding effectiveness of techniques

- ON-OFF traffic at edges
 - Binned in 15 and 100 m. secs
 - We observe that ON-OFF persists
Data-Center Traffic is Bursty

- Understanding arrival process
 - Range of acceptable models

- What is the arrival process?
 - **Heavy-tail** for the 3 distributions
 - ON, OFF times, Inter-arrival,
 - **Lognormal** across all data centers

- Different from Pareto of WAN
 - Need new models

<table>
<thead>
<tr>
<th>Data Center</th>
<th>Off Period Dist</th>
<th>ON periods Dist</th>
<th>Inter-arrival Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prv2_1</td>
<td>Lognormal</td>
<td>Lognormal</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Prv2_2</td>
<td>Lognormal</td>
<td>Lognormal</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Prv2_3</td>
<td>Lognormal</td>
<td>Lognormal</td>
<td>Lognormal</td>
</tr>
<tr>
<td>Prv2_4</td>
<td>Lognormal</td>
<td>Lognormal</td>
<td>Lognormal</td>
</tr>
<tr>
<td>EDU1</td>
<td>Lognormal</td>
<td>Weibull</td>
<td>Weibull</td>
</tr>
<tr>
<td>EDU2</td>
<td>Lognormal</td>
<td>Weibull</td>
<td>Weibull</td>
</tr>
<tr>
<td>EDU3</td>
<td>Lognormal</td>
<td>Weibull</td>
<td>Weibull</td>
</tr>
</tbody>
</table>
Packet Size Distribution

- Bimodal (200B and 1400B)
- Small packets
 - TCP acknowledgements
 - Keep alive packets
- Persistent connections \(\rightarrow\) important to apps
Intra-Rack Versus Extra-Rack

- Quantify amount of traffic using interconnect
 - Perspective for interconnect analysis

Extra-Rack = Sum of Uplinks
Intra-Rack = Sum of Server Links – Extra-Rack
Intra-Rack Versus Extra-Rack Results

- Clouds: most traffic stays within a rack (75%)
 - Colocation of apps and dependent components
- Other DCs: > 50% leaves the rack
 - Un-optimized placement
Extra-Rack Traffic on DC Interconnect

- Utilization: core > agg > edge
 - Aggregation of many unto few

- Tail of core utilization differs
 - Hot-spots → links with > 70% util
 - Prevalence of hot-spots differs across data centers
Persistence of Core Hot-Spots

- Low persistence: PRV2, EDU1, EDU2, EDU3, CLD1, CLD3
- High persistence/low prevalence: PRV1, CLD2
 - 2-8% are hotspots > 50%
- High persistence/high prevalence: CLD4, CLD5
 - 15% are hotspots > 50%
Prevalence of Core Hot-Spots

- Low persistence: very few concurrent hotspots
- High persistence: few concurrent hotspots
- High prevalence: < 25% are hotspots at any time
Observations from Interconnect

• Links utils low at edge and agg
• Core most utilized
 • Hot-spots exists (> 70% utilization)
 • < 25% links are hotspots
 • Loss occurs on less utilized links (< 70%)
 • Implicating momentary bursts
• Time-of-Day variations exists
 • Variation an order of magnitude larger at core
• Apply these results to evaluate DC design requirements
Assumption 1: Larger Bisection

- Need for larger bisection
 - VL2 [Sigcomm ‘09], Monsoon [Presto ‘08], Fat-Tree [Sigcomm ‘08], Portland [Sigcomm ‘09], Hedera [NSDI ’10]

- Congestion at oversubscribed core links
Argument for Larger Bisection

• Need for larger bisection
 • VL2 [Sigcomm ‘09], Monsoon [Presto ‘08], Fat-Tree [Sigcomm ‘08], Portland [Sigcomm ‘09], Hedera [NSDI ’10]
 • Congestion at oversubscribed core links
 • Increase core links and eliminate congestion
Calculating Bisection Demand

If \(\sum \text{traffic(App)} \) are \(\sum \text{capacity(Bisection bisection)} \) > 1 then more device needed at the bisection.
Bisection Demand

- Given our data: current applications and DC design
 - **NO**, more bisection is not required
 - Aggregate bisection is only 30% utilized
- Need to better utilize existing network
 - Load balance across paths
 - Migrate VMs across racks
Related Works

• IMC ‘09 [Kandula`09]
 • Traffic is unpredictable
 • Most traffic stays within a rack

• Cloud measurements [Wang’10,Li’10]
 • Study application performance
 • End-2-End measurements
Insights Gained

• 75% of traffic stays within a rack (Clouds)
 • Applications are not uniformly placed
• Half packets are small (< 200B)
 • Keep alive integral in application design
• At most 25% of core links highly utilized
 • Effective routing algorithm to reduce utilization
 • Load balance across paths and migrate VMs
• Questioned popular assumptions
 • Do we need more bisection? No
 • Is centralization feasible? Yes
Are Fat-Trees the last word in datacenter topologies?

(Figures from original papers/slide decks)
Fat-Tree – Limitations

• Incremental expansion hard
• Structure in networks constrains expansion
 • 3-level Fat-Tree: $5k^2/4$ switches
 • 24 port switches \Rightarrow 3,456 servers
 • 48 port switches \Rightarrow 27,648 servers
Jellyfish – Randomly Connect ToR Switches

- Same procedure for construction and expansion

![Graph showing normalized bisection bandwidth vs. total budget. Jellyfish is 60% cheaper than LEGUP.]

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]
Jellyfish – Higher Bandwidth than Fat-Trees

Number of Servers at Full Throughput

Packet level simulation; random permutation traffic

+25% more servers; increase with scale
Jellyfish – Higher Bandwidth than Fat-Trees

If we **fully utilize** all available capacity ...

\[\sum_{\text{vlinks}} \text{capacity}(\text{link}) \]

Number of flows at full throughput (1 Gbps) = \[
\frac{\text{total network capacity}}{\text{capacity used per flow}} \cdot \text{1 Gbps} \cdot \text{mean path length}
\]

Mission: minimize average path length
Fat-Trees – Limitations

- Perform well in average case
- Core layer can have high-persistence, high-prevalence hotspots
Flyways – Dynamic High Bandwidth Links

• 60GHz low cost wireless technology
• Dynamically inject links where needed
Fat-Trees – Limitations

• High maintenance and cabling costs
• Static topology has low flexibility
Completely Wireless Datacenters

- Cayley (Ji-Yong, Hakim, EGS, Darko Kirovski, ANCS12) uses 60GHz wireless
- Firefly (Hamedazimi et al., SIGCOMM14) and ProjecToR (Ghobadi et al., SIGCOMM16) use free-space optics

Figure 1: High-level view of the FireFly architecture. The only switches are the Top-of-Rack (ToR) switches.

Source: Hamedazimi et al., SIGCOMM14