Specifying Systems (using TLA+)

Based on Leslie Lamport's book "Specifying Systems"

Definition: State

- Definition: A state is an assignment of values to (all) variables
- TLA+ notation: $[var_1 = value_1, var_2 = value_2, \cdots]$
 - Meaning: a state in which var_1 has value $value_1$, ...
 - Order is immaterial
- Example: [hr = 3]
 - Meaning: a state in which hr = 3
 - The values of other variables are not specified
 - There can be many infinitely many states in which hr=3
 - e.g. [hr = 3. temp = 62], [hr = 3. temp = 68], ...
 - Models perhaps the hour hand being 3 on some hour clock HC

Definition: Behavior

- Definition 1: A *behavior* is a function of time to state Computer systems can be thought of as executing in steps, so
- Definition 2: A *behavior* is a sequence of states
- Notation: $state_1 \rightarrow state_2 \rightarrow state_3 \rightarrow \cdots$
- Example: $[hr = 11] \rightarrow [hr = 12] \rightarrow [hr = 1]$

Definition: Step

- Definition: A step consists of two consecutive states in a behavior
- aka transition
- Notation: $state_1 \rightarrow state_2$
- Example: $[hr = 3] \rightarrow [hr = 4]$

Definition: Specification

- A *specification* is a set of all possible behaviors
- Consists of two parts
 - 1. Set of all possible *initial states*
 - 2. A "next-state" relation that describes the ways a state may change in a step
 - i.e., the set of all possible pairs of states

Set of Initial States

- Example: HCini $\triangleq hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
 - Or, informally, HCini $\triangleq hr \in \{1, \dots, 12\}$
 - HCini is simply a name given to the predicate
- A set of states can often be succinctly described by a predicate
 - Example: HCini $\triangleq hr \in \mathbb{N} \land 1 \leq hr \land hr \leq 12$
- Note again that these describe not 12 but an infinite set of states

Definition: Next-State Relation

- A next-state relation is a relation between pairs of successive states
 - $\{(state_1^{pre}, state_1^{post}), (state_2^{pre}, state_2^{post}), \cdots \}$
- Example:
 - HCnxt $\triangleq \{ ([hr = 11], [hr = 12]), ([hr = 12], [hr = 1]), \dots \}$

Definition: Action

- A next-state relation can often be more succinctly described by a predicate
- Definition 1: an *action* is a predicate over a pair of states
- Example: HCnxt $\triangleq hr' = hr \% 12 + 1$ (% is the "modulo" operator)
 - or, $HCnxt_2 \triangleq hr' = IF hr = 12 THEN 1 ELSE hr + 1$
 - But note that HCnxt₂ ≠ HCnxt
- hr' is the value of hr in the new state; hr is the value in the old state
- Definition 2: an action is a predicate containing both primed and unprimed variables
- An ordinary predicate and does not have to be of the form "x' = f(x)"
 - Example: $HCnxt \triangleq hr' hr = 1 \mod 12$

Steps versus Actions versus Execution

- A step is a pair of states
- An action \mathcal{A} is a predicate over steps
- We call a step that satisfies $\mathcal A$ an $\mathcal A$ step
 - Example: a step that satisfies HCnxt is an HCnxt step
- We sometimes informally say that HCnxt is executed

Example specification: hour clock (in complete isolation)

Module HourClock

Variable hr

- HCini $\triangleq hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- HCnxt $\triangleq hr' = hr \mod 12 + 1$
- HC ≜ HCini ∧ □ HCnxt

Temporal logic formula $\Box P$ means that predicate P *always* holds (thus HCnxt is *invariant* in HC)

Note:

- 1. All three statements are definitions, but the last one happens to constitute the full specification of the hour clock)
- 2. There is no conventional naming in TLA+, so pick names that are descriptive

Definition: Stuttering steps

- Clocks are usually part of a larger system
- They have more state variables than just the hour hand of the clock
- State changes must allow for hour hand not to change
 - Example: $[hr = 3. \text{ temp} = 62] \rightarrow [hr = 3. \text{ temp} = 63]$
- This is called a *stuttering step* of the clock
 - i.e., hr' = hr

Final specification: hardware clock

Module HourClock

- Variable *hr*
- HCini $\triangleq hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- $HCnxt \triangleq hr' = hr \mod 12 + 1$
- HC \triangleq HCini $\land \Box$ (HCnxt $\lor (hr' = hr)$)

The latter can be abbreviated using the following TLA+ notation

$$\mathsf{HC} \triangleq \mathsf{HCini} \land \Box [\mathsf{HCnxt}]_{hr}$$

 $([HCnxt]_{hr})$ is pronounced "square HCnxt sub hr")

Definition: theorem

- Definition: in TLA+, a *theorem* of a specification is a temporal formula that holds over every behavior of the specification
- Example: $HC \Rightarrow \Box hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
 - That is, $HC \Rightarrow \Box HCini$
- Proof: by induction on #steps

A note on variables and types

- Variables in TLA+ are untyped
- However, if one can prove SPEC $\Rightarrow \Box v \in S$ for some variable v and constant set S, then one can call S the type of v in SPEC
- Example: the type of hr in HC is $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- It is useful to specify the types in a specification
- Example: HCtypeInvariant $\triangleq hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- Note, in this case HCtypeInvariant \equiv HCini

A note on states and behaviors

- Recall
 - A state is an assignment of values to variables
 - A behavior is a sequence of states
- Thus
 - [hr = 13] is still a state, and so is [hr = "blue"]
 - $[hr = 4] \rightarrow [hr = 3]$ is still a behavior
- However, they are not in specification HC

Recall

- A *state* is an assignment of values to all variables
- A *step* is a pair of states
- A stuttering step wrt some variable leaves the variable unchanged
- An *action* is a predicate over a pair of states
 - If x is a variable in the old state, then x' is the same variable in the new state
- A *behavior* is an infinite sequence of states (with an initial state)
- A specification characterizes the initial state and actions

Spec that generates all prime numbers

— MODULE *prime*

EXTENDS Naturals VARIABLE p

$$isPrime(q) \triangleq q > 1 \land \forall r \in 2 ... (q-1) : q\%r \neq 0$$

 $TypeInvariant \triangleq isPrime(p)$

$$Init \stackrel{\triangle}{=} p = 2$$

$$Next \stackrel{\triangle}{=} p' > p \land isPrime(p') \land \forall q \in (p+1) ... (p'-1) : \neg isPrime(q)$$

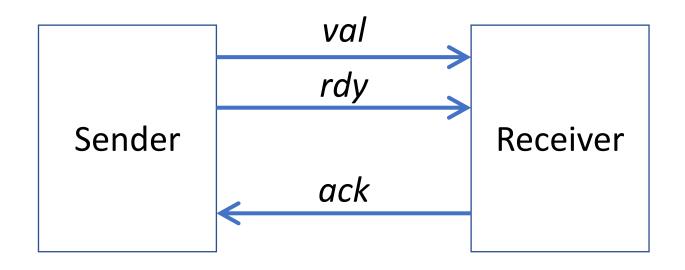
$$Spec \triangleq Init \wedge \Box [Next]_p$$

Theorem $Spec \Rightarrow \Box TypeInvariant$

Spec that generates all prime numbers

```
----- MODULE prime -----
EXTENDS Naturals
VARIABLE p
isPrime(q) == q > 1 / A r in 2..(q-1): q%r /= 0
TypeInvariant == isPrime(p)
Init == p = 2
Next == p' > p / isPrime(p') / A q in (p+1)..(p'-1): ~isPrime(q)
Spec == Init / [] [Next] p
THEOREM Spec => []TypeInvariant
```

Asynchronous FIFO Channel Specification



Send
$$\triangleq \land rdy = ack$$
 $Recv \triangleq \land rdy \neq ack$ $\land val' \in Data$ $\land ack' = 1 - ack$ $\land rdy' = 1 - rdy$ $\land val' = val$ $\land ack' = ack$ $\land rdy' = rdy$

Asynchronous FIFO Channel Specification

 \wedge ack' = ack

 $\wedge rdy' = 1 - rdy$

 $Next \triangleq Send \lor Recv$

 $Spec \triangleq Init \land \Box [Next]_{\langle rdy, ack, val \rangle}$

Asynchronous FIFO Channel Specification introducing operators with arguments

Send
$$\triangleq \land rdy = ack$$

 $\land val' \in Data$
 $\land rdy' = 1 - rdy$
 $\land ack' = ack$

Send(d)
$$\triangleq \land rdy = ack$$

 $\land val' = d$
 $\land rdy' = 1 - rdy$
 $\land ack' = ack$

$$Next \triangleq \lor Send$$

 $\lor Recv$

$$Next \triangleq \forall \exists d \in Data: Send(d)$$

 $\forall Recv$

Asynchronous FIFO Channel Specification introducing *records*

 $Spec \triangleq Init \land \Box [Next]_{chan}$

```
TypeInvariant \triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]
Init \triangleq chan.val \in Data \land chan.rdy \in \{0,1\} \land chan.ack = chan.rdy
Send(d) \triangleq chan.rdy = chan.ack \land chan' =
                   [val \mapsto d, rdy \mapsto 1 - chan.rdy, ack \mapsto chan.ack]
Recv \triangleq chan.rdy \neq chan.ack \land chan' =
                   [val \mapsto chan.val, rdy \mapsto chan.rdy, ack \mapsto 1 - chan.ack]
Next \triangleq \exists d \in Data: Send(d) \lor Recv
```

Some more terms

- A state function is an ordinary expression with (unprimed) variables
 - i.e., it is a function of a state to a value
 - note that a variable is a state function
- A *state predicate* is a Boolean state function
- A temporal formula is an assertion about behaviors
- A theorem of a specification is a temporal formula that holds over every behavior of the specification
- If S is a specification and I is a predicate and $S \Rightarrow \Box I$ is a theorem then we call I an *invariant* of S.

Temporal Formula

Based on Chapter 8 of Specifying Systems

- A temporal formula F assigns a Boolean value to a behavior σ
- $\sigma \models F$ means that F holds over σ
- F is a theorem if $\sigma \models F$ holds over all behaviors σ
- If P is a state predicate, then $\sigma \vDash P$ means that P holds over the first state in σ
- If A is an action, then $\sigma \vDash A$ means that A holds over the first two states in σ
 - i.e., the first step in σ is an A step
- If A is an action, then $\sigma \models [A]_v$ means that the first step in σ is an A step or a stuttering step with respect to v

□ Always

- $\sigma \models \Box F$ means that F holds over every suffix of σ
- More formally
 - Let σ^{+n} be σ with the first n states removed
 - Then $\sigma \vDash \Box F \triangleq \forall n \in \mathbb{N}$: $\sigma^{+n} \vDash F$

Boolean combinations of temporal formulas

- $\sigma \vDash (F \land G) \triangleq (\sigma \vDash F) \land (\sigma \vDash G)$
- $\sigma \vDash (F \lor G) \triangleq (\sigma \vDash F) \lor (\sigma \vDash G)$
- $\sigma \vDash \neg F \triangleq \neg (\sigma \vDash F)$
- $\sigma \vDash (F \Rightarrow G) \triangleq (\sigma \vDash F) \Rightarrow (\sigma \vDash G)$
- $\sigma \models (\exists r : F) \triangleq \exists r : \sigma \models F$
- $\sigma \models (\forall r \in S : F) \triangleq \forall r \in S : \sigma \models F$ // if S is a constant set

Example

What is the meaning of $\sigma \models \Box((x=1) \Rightarrow \Box(y>0))$?

```
\sigma \vDash \Box((x = 1) \Rightarrow \Box(y > 0))
\equiv \forall n \in \mathbb{N}: \ \sigma^{+n} \vDash ((x = 1) \Rightarrow \Box(y > 0))
\equiv \forall n \in \mathbb{N}: \ (\sigma^{+n} \vDash (x = 1)) \Rightarrow (\sigma^{+n} \vDash \Box(y > 0))
\equiv \forall n \in \mathbb{N}: \ (\sigma^{+n} \vDash (x = 1)) \Rightarrow (\forall m \in \mathbb{N}: \ (\sigma^{+n})^{+m} \vDash (y > 0))
```

If x = 1 in some state, then henceforth y > 0 in all subsequent states

Not: once x = 1, x will always be 1. That would be $\sigma \models \Box((x = 1) \Rightarrow \Box(x = 1))$

Not every temporal formula is a TLA+ formula

- TLA+ formulas are temporal formulas that are invariant under stuttering
 - They hold even if you add or remove stuttering steps
- Examples
 - *P* if *P* is a state predicate
 - $\Box P$ if P is a state predicate
 - $\square[A]_v$ if A is an action and v is a state variable (or even state function)
- But not
 - x' = x + 1 not satisfied by $[x = 1] \rightarrow [x = 1] \rightarrow [x = 2]$ • $[x' = x + 1]_x$ satisfied by $[x = 1] \rightarrow [x = 1] \rightarrow [x = 3]$ but not by $[x = 1] \rightarrow [x = 3]$
- Yet $\square[x' = x + 1]_x$ is a TLA+ formula!

Eventually F

$$\diamond F \triangleq \neg \Box \neg F$$

```
\sigma \models \Diamond F 

\equiv \sigma \models \neg \Box \neg F 

\equiv \neg(\sigma \models \Box \neg F) 

\equiv \neg(\forall n \in \mathbb{N}: \sigma^{+n} \models \neg F) 

\equiv \neg(\forall n \in \mathbb{N}: \neg(\sigma^{+n} \models F)) 

\equiv \exists n \in \mathbb{N}: (\sigma^{+n} \models F)
```

Eventually an A step occurs that changes v...

HourClock revisited

Module HourClock

Variable *hr*

hr is a parameter of the specification HourClock

- HCini $\triangleq hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- HCnxt $\triangleq hr' = hr \mod 12 + 1$
- HC \triangleq HCini $\land \Box$ [HCnxt]_{hr}

HourClock with *liveness* clock that never stops

Module HourClock

Variable *hr*

- HCini $\triangleq hr \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- HCnxt $\triangleq hr' = hr \mod 12 + 1$
- HC \triangleq HCini $\land \Box$ [HCnxt]_{hr}
- LiveHC \triangleq HC $\land \Box (\diamondsuit \langle HCnxt \rangle_{hr})$

Module Channel with Liveness

```
Variable chan
Constant Data
TypeInvariant \triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]
Init \triangleq chan.val \in Data \land chan.rdy \in \{0,1\} \land chan.ack = chan.rdy
Send(d) \triangleq chan.rdy = chan.ack \land chan' =
                    [val \mapsto d, rdy \mapsto 1 - chan.rdy, ack \mapsto chan.ack]
Recv \triangleq chan.rdy \neq chan.ack \land chan' =
                    [val \mapsto chan.val, rdy \mapsto chan.rdy, ack \mapsto 1 - chan.ack]
Next \triangleq \exists d \in Data: Send(d) \lor Recv
Spec \triangleq Init \land \Box [Next]_{chan}
                                         LiveSpec \triangleq Spec \land \Box(\Diamond \langle Next \rangle_{chan}) ???
```

Module Channel with Liveness

```
Constant Data
                                          Variable chan
TypeInvariant \triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]
Init \triangleq chan.val \in Data \land chan.rdy \in \{0,1\} \land chan.ack = chan.rdy
Send(d) \triangleq chan.rdy = chan.ack \land chan' =
                     [val \mapsto d, rdy \mapsto 1 - chan.rdy, ack \mapsto chan.ack]
Recv \triangleq chan.rdy \neq chan.ack \land char
                    [val \mapsto chan.val, ra] Too Strong --- If nothing to send that should be ok
Next \triangleq \exists d \in Data: Send(d) \lor Recv
Spec \triangleq Init \land \Box [Next]_{chan}
                                         LiveSpec \triangleq Spec \land \Box(\Diamond \langle Next \rangle_{chan}) ???
```

Module Channel with Liveness

```
Variable chan
Constant Data
TypeInvariant \triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]
Init \triangleq chan.val \in Data \land chan.rdy \in \{0,1\} \land chan.ack = chan.rdy
Send(d) \triangleq chan.rdy = chan.ack \land chan' =
                    [val \mapsto d, rdy \mapsto 1 - chan.rdy, ack \mapsto chan.ack]
Recv \triangleq chan.rdy \neq chan.ack \land chan' =
                    [val \mapsto chan.val, rdy \mapsto chan.rdy, ack \mapsto 1 - chan.ack]
Next \triangleq \exists d \in Data: Send(d) \lor Recv
Spec \triangleq Init \land \Box [Next]_{chan}
               LiveSpec \triangleq Spec \land \Box(chan.rdy \neq chan.ack \Rightarrow \Diamond \langle Recv \rangle_{chan})
```

Weak Fairness as a liveness condition

- ENABLED $\langle A \rangle_{v}$ means action A is possible in some state
 - State predicate conjuncts all hold and some next state must exist
- $WF_v(A) \triangleq \Box(\Box \text{ENABLED } \langle A \rangle_v \Rightarrow \Diamond \langle A \rangle_v)$

- HourClock: $WF_{hr}(HCnxt)$
- Channel: $WF_{chan}(Recv)$

(surprising) Weak Fairness equivalence

```
• WF_v(A) \triangleq \Box(\Box \text{ENABLED } \langle A \rangle_v \Rightarrow \Diamond \langle A \rangle_v)

\equiv \Box \Diamond(\neg \text{ENABLED } \langle A \rangle_v) \lor \Box \Diamond \langle A \rangle_v

\equiv \Diamond \Box(\text{ENABLED } \langle A \rangle_v) \Rightarrow \Box \Diamond \langle A \rangle_v
```

- Always, if A is enabled forever, then an A step eventually occurs
- A is infinitely often disabled or infinitely many A steps occur
- If A is eventually enabled forever then infinitely many A steps occur

Strong Fairness

•
$$SF_v(A) \triangleq \Diamond \Box (\neg \text{enabled } \langle A \rangle_v) \lor \Box \Diamond \langle A \rangle_v$$

 $\equiv \Box \Diamond (\text{enabled } \langle A \rangle_v) \Rightarrow \Box \Diamond \langle A \rangle_v$

- A is eventually disabled forever or infinitely many A steps occur
- If A is infinitely often enabled then infinitely many A steps occur

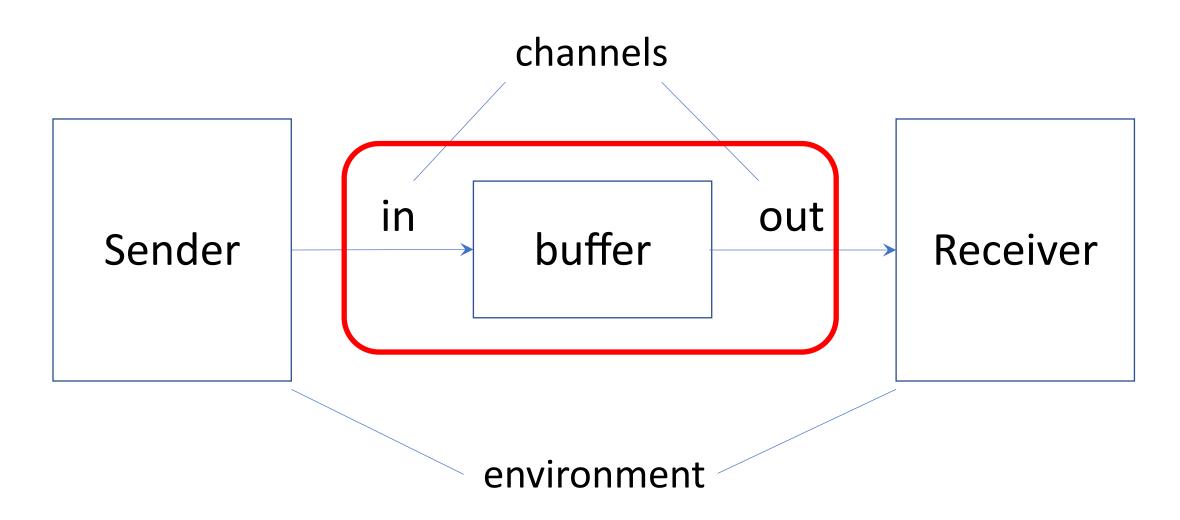
 $SF_v(A)$: an A step must occur if A is continually enabled $WF_v(A)$: an A step must occur if A is continuously enabled

As always, better to make the weaker assumption if you can

How important is liveness?

- Liveness rules out behaviors that have only stuttering steps
 - Add non-triviality of a specification
- In practice, "eventual" is often not good enough
- Instead, need to specify performance requirements
 - Service Level Objectives (SLOs)
 - Usually done quite informally

A "FIFO" (async buffered FIFO channel) Chapter 4 from Specifying Systems



Module Channel

Constant Data

Variable chan

```
TypeInvariant \triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]
Init \triangleq chan.val \in Data \land chan.rdy \in \{0,1\} \land chan.ack = chan.rdy
Send(d) \triangleq chan.rdy = chan.ack \land chan' =
                   [val \mapsto d, rdy \mapsto 1 - chan.rdy, ack \mapsto chan.ack]
Recv \triangleq chan.rdy \neq chan.ack \land chan' =
                   [val \mapsto chan.val, rdy \mapsto chan.rdy, ack \mapsto 1 - chan.ack]
Next \triangleq \exists d \in Data: Send(d) \lor Recv
```

 $Spec \triangleq Init \land \Box [Next]_{chan}$

Instantiating a Channel

 $InChan \triangleq INSTANCE\ Channel\ WITH\ Data\ \leftarrow Message, chan\ \leftarrow in$

TypeInvariant $\triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]$

 $InChan!TypeInvariant \equiv in \in [val: Message, rdy: \{0,1\}, ack: \{0,1\}]$

Instantiation is Substitution!

MODULE InnerFIFO

Extends Naturals, Sequences

Constant Message

Variables in, out, q

 $InChan \triangleq \text{Instance } Channel \text{ with } Data \leftarrow Message, \ chan \leftarrow in$

 $OutChan \triangleq Instance Channel with Data \leftarrow Message, chan \leftarrow out$

$$Init \triangleq \land InChan!Init \\ \land OutChan!Init \\ \land q = \langle \rangle$$

 $TypeInvariant \triangleq \land InChan! TypeInvariant \\ \land OutChan! TypeInvariant \\ \land q \in Seq(Message)$

$$SSend(msg) \triangleq \land InChan!Send(msg) \land UNCHANGED \langle out, q \rangle$$

Send msg on channel in.

$$BufRcv \triangleq \land InChan!Rcv \land q' = Append(q, in.val) \land UNCHANGED out$$

Receive message from channel in and append it to tail of q.

$$BufSend \triangleq \land q \neq \langle \rangle \\ \land OutChan!Send(Head(q)) \\ \land q' = Tail(q) \\ \land UNCHANGED in$$

Enabled only if q is nonempty. Send Head(q) on channel out and remove it from q.

$$RRcv \triangleq \land OutChan!Rcv$$

 $\land UNCHANGED \langle in, q \rangle$

Receive message from channel out.

```
Next \triangleq \lor \exists msg \in Message : SSend(msg) 
 \lor BufRcv 
 \lor BufSend 
 \lor RRcv 
 Spec \triangleq Init \land \Box[Next]_{\langle in, out, q \rangle}
```

THEOREM $Spec \Rightarrow \Box TypeInvariant$

Parametrized Instantiation

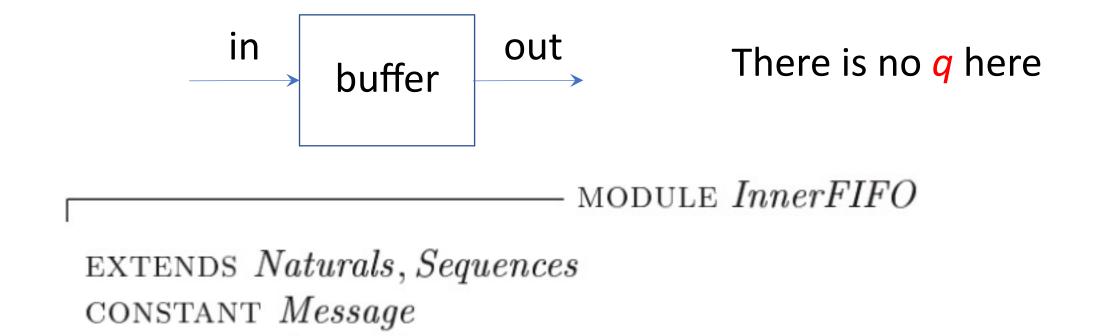
 $InChan \triangleq INSTANCE\ Channel\ WITH\ Data\ \leftarrow Message, chan\ \leftarrow in$

 $Chan(ch) \triangleq INSTANCE\ Channel\ WITH\ Data\ \leftarrow Message, chan\ \leftarrow ch$

TypeInvariant $\triangleq chan \in [val: Data, rdy: \{0,1\}, ack: \{0,1\}]$

Chan(in)!TypeInvariant $\equiv in \in [val: Message, rdy: \{0,1\}, ack: \{0,1\}]$

Internal (= Non-Interface) Variables



VARIABLES in, out, q

Not incorrect, but don't really want q to be a specification parameter

But there is a q here

Hiding Internal Variables

MODULE FIFO

```
Constant Message variables in, out
```

$$Inner(q) \triangleq Instance InnerFIFO$$

$$Spec \triangleq \exists q : Inner(q)! Spec$$

Hiding Internal Variables

MODULE FIFO

Constant Message variables in, out

$$Inner(q) \triangleq Instance InnerFIFO$$

$$Spec \triangleq \exists q : Inner(q)!Spec$$

Not the normal existential quantifier!!!

In temporal logic, this means that for every state in a behavior, there is a value for q that makes Inner(q)!Spec true

Pretty. Now for something cool!

- Suppose we wanted to implemented a bounded buffer
- That is, $\Box len(q) \leq N$ for some constant N > 0
- The only place where q is extended is in *BufRcv*

```
BufRcv \triangleq \land InChan!Rcv \land q' = Append(q, in.val) \land UNCHANGED out
```

Pretty. Now for something cool!

- Suppose we wanted to implemented a bounded buffer
- That is, $\Box len(q) \leq N$ for some constant N > 0
- The only place where q is extended is in BufRcv

```
BufRcv \triangleq \land InChan!Rcv
 \land q' = Append(q, in.val)
 \land UNCHANGED \ out
 \land len(q) < N
```

Even cooler (but tricky)

- MODULE BoundedFIFO

Extends Naturals, Sequences

VARIABLES in, out

Constant Message, N

ASSUME $(N \in Nat) \land (N > 0)$

 $Inner(q) \triangleq Instance InnerFIFO$

 $BNext(q) \triangleq \land Inner(q)!Next$ $\land Inner(q)!BufRcv \Rightarrow (Len(q) < N)$

 $Spec \triangleq \exists q : Inner(q)!Init \land \Box [BNext(q)]_{\langle in,out,q \rangle}$

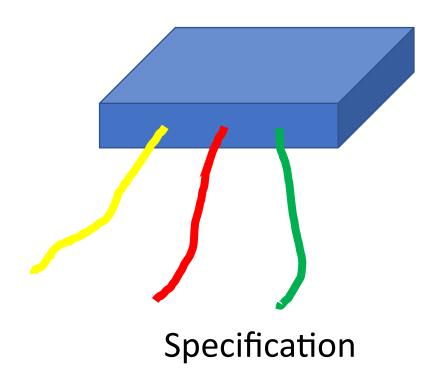
If it is a *BufRcv* step, then len(q) < N

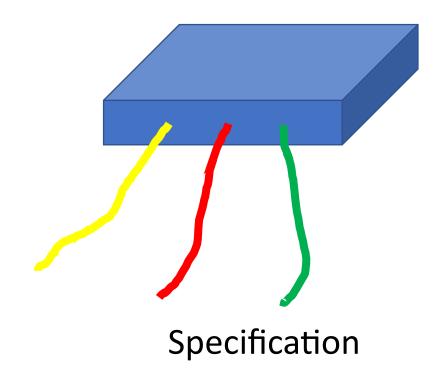
Even cooler (but tricky)

```
- Module BoundedFIFO
EXTENDS Naturals, Sequences
VARIABLES in, out
CONSTANT Message, N
ASSUME (N \in Nat) \land (N > 0)
Inner(q) \triangleq INSTANCE\ InnerFIFO
BNext(q) \triangleq \land Inner(q)!Next
               \land Inner(q)!BufRcv \Rightarrow (Len(q) < N)
Spec \triangleq \exists q : Inner(q)!Init \land \Box [BNext(q)]_{\langle in,out,q \rangle}
```

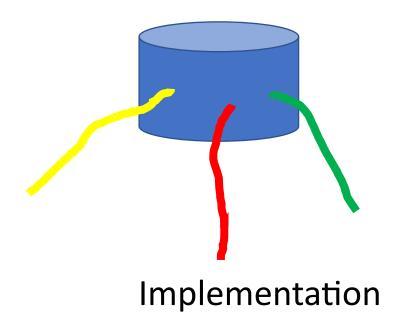
Refinement

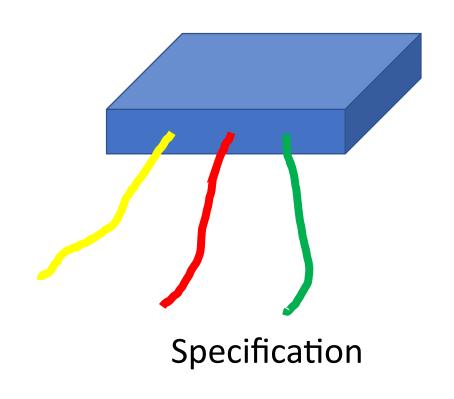
Based on material from Section 10.8, Specifying Systems by Leslie Lamport

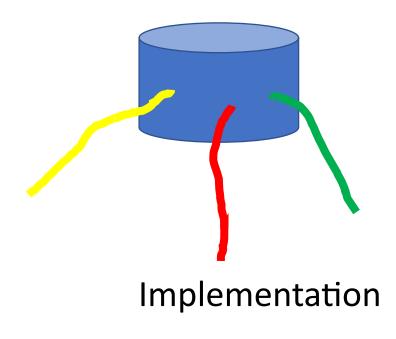




You get:

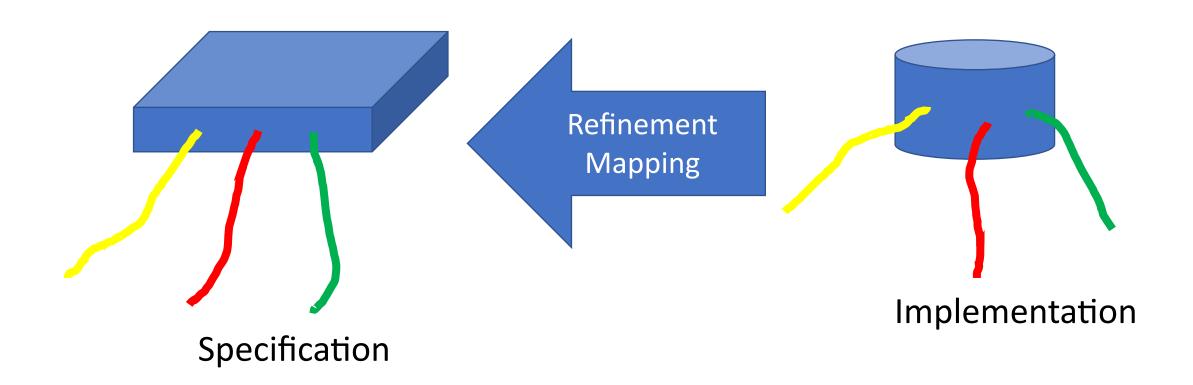






Is every behavior of the implementation also a behavior of the specification?

You get:



Is every behavior of the implementation also a behavior of the specification?

External/internal variables of a state

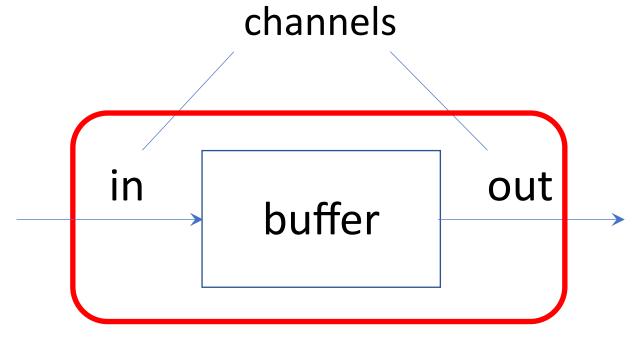
 A specification has certain external variables that can be observed and/or manipulated

• It may also have *internal variables* that are used to describe behaviors but that cannot be observed

• Example: FIFO

• External variables: in, out

• Internal variable: buffer



Externally visible vs complete behavior

A system may exhibit externally visible behavior

$$e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow e_4 \rightarrow \dots$$

if there exists a complete behavior

$$(e_1, y_1) \rightarrow (e_2, y_2) \rightarrow (e_3, y_3) \rightarrow (e_4, y_4) \rightarrow$$

that is allowed by the specification

Here e_i is some externally visible state (for example, in and out channels) and y_i is internal state (for example, the buffer)

Stuttering Steps

A specification should allow changes to the internal state that does not change the externally visible state.

For example:

$$(e_1, y_1) \rightarrow (e_2, y_2) \rightarrow (e_2, y_2') \rightarrow (e_3, y_3) \rightarrow (e_4, y_4) \rightarrow$$

leads to external behavior

$$e_1 \rightarrow e_2 \rightarrow e_2 \rightarrow e_3 \rightarrow e_4 \rightarrow \dots$$

which should be identical (up to stuttering) to

$$e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow e_4 \rightarrow \dots$$

Proving that an implementation meets the specification

- First note that an implementation is just a specification
- We call the implementation the "lower-level" specification

We need to prove that if an implementation allows the complete behavior

$$(e_1, z_1) \to (e_2, z_2) \to (e_3, z_3) \to (e_4, z_4) \to$$

then there exists a complete behavior

$$(e_1, y_1) \to (e_2, y_2) \to (e_3, y_3) \to (e_4, y_4) \to$$

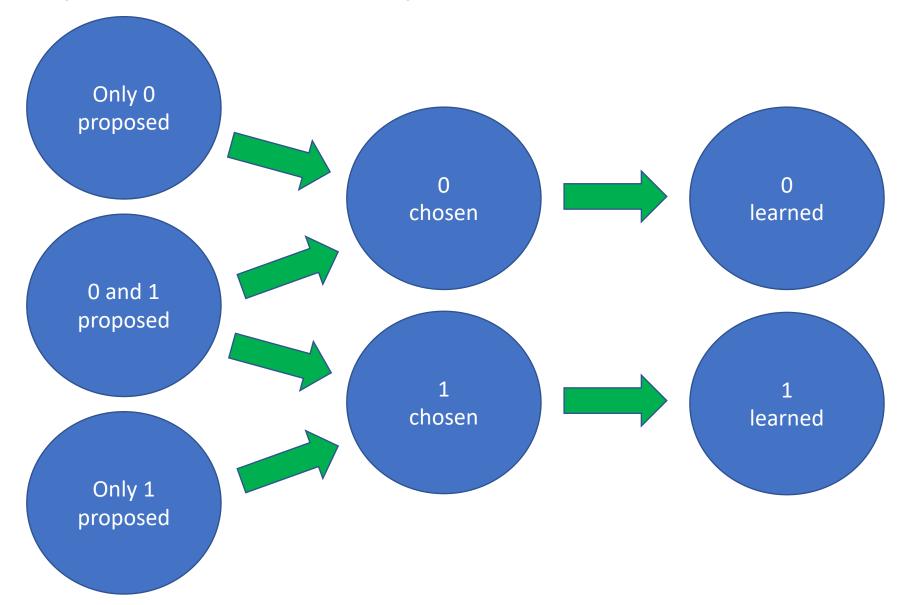
allowed by the specification

A mapping from low-level complete behaviors to high-level complete behaviors is called a "refinement mapping"

Note, there may be multiple possible refinement mappings---you only need to show one

It's not always possible to get a refinement ³

Binary Consensus, Specification



Paxos

- Value is chosen if a quorum of proposers have all accepted the value on the same ballot
- This suggest an easy mapping of the Paxos state to the consensus state

Problem 1: lack of history

- Unfortunately, Paxos acceptors only remember the latest value they accepted
- So while there may exists a majority that have all accepted the value at time t, that majority may no longer exist at time t+1
 - Even though it is guaranteed that no other value will ever be chosen

Fix 1: add history variables

- We can add a "ghost variable" to each acceptor that remembers all (value, ballot) pairs it has ever accepted
 - "ghost" means that it does not actually have to be realized
- With this "history variable", we can exhibit a state mapping

Problem 2: outrunning the specification

- A refinement mapping maps each step of the low-level specification to either one step of the high-level specification or a stuttering step of the high-level specification
- In Paxos, when f=1 and n=3, the following scenario is possible:
 - Leader proposes a (value, ballot)
 - Some acceptor accepts (value, ballot)
 - In that one step:
 - The value is chosen
 - The acceptor learns that the value is chosen (decided)
- However, our high-level consensus spec requires two steps:
 - From undecided to chosen and from chosen to learned

Fix 2: two possibilities

- Change the high-level spec to include a "choose + learn" step
 - i.e., speed up the high-level spec
 - complicates the high-level specification
 - changing the specification may not be allowed
- Add a ghost "prophecy variable" to the low-level specification
 - slow down the low-level spec
 - artificially insert a step between accepting and learning by changing the prophecy variable
 - does not change either the implementation or the high-level spec

Completeness

• If S1 implements S2 then, possibly by adding history and prophecy variables, there exists a refinement mapping from S2 to S1 (under certain reasonable assumptions)

See Martin Abadi and Leslie Lamport, "The Existence of Refinement Mappings"

Writing Specs

Why specify?

- To avoid errors!
 - writing a spec identifies corner cases
 - allows automated checking
 - model checking / verification
- To clarify communication between designers and builders
 - which avoids errors too...

What to specify?

- Start with the most difficult pieces
 - those pieces that are most likely to have errors in it
- Grain of atomicity
 - Too coarse may fail to reveal important details
 - Too fine may make the spec unwieldy

When to specify

- Ideally before system is implemented
 - find errors early!
- In reality, often implementation provides additional insights that may require chances to the specification
 - try to minimize this---changing the spec a lot wastes dollars and can even kill entire projects
- In practice, not unusual to write spec after an implementation is completed
 - because specs make good documentation

General hints

- Keep it simple, stupid (KISS principle)
 - spec must be clear
- Don't be too abstract
 - may overlook details that are important in a real system
- Write comments