
Specifying Systems (using TLA+)
Based on Leslie Lamport’s book “Specifying Systems”



Defini&on: State

• Defini&on: A state is an assignment of values to (all) variables
• TLA+ nota&on: 𝑣𝑎𝑟! = 𝑣𝑎𝑙𝑢𝑒!, 𝑣𝑎𝑟" = 𝑣𝑎𝑙𝑢𝑒", ⋯
• Meaning: a state in which 𝑣𝑎𝑟! has value 𝑣𝑎𝑙𝑢𝑒!, ⋯
• Order is immaterial

• Example: ℎ𝑟 = 3
• Meaning: a state in which ℎ𝑟 = 3

• The values of other variables are not specified
• There can be many infinitely many states in which ℎ𝑟 = 3

• e.g. [ℎ𝑟 = 3. t𝑒𝑚𝑝 = 62], [ℎ𝑟 = 3. t𝑒𝑚𝑝 = 68], …
• Models perhaps the hour hand being 3 on some hour clock HC



Defini&on: Behavior

• Defini&on 1: A behavior is a func&on of &me to state
Computer systems can be thought of as execu&ng in steps, so
• Defini&on 2: A behavior is a sequence of states
• Nota&on: 𝑠𝑡𝑎𝑡𝑒! → 𝑠𝑡𝑎𝑡𝑒" → 𝑠𝑡𝑎𝑡𝑒/ →⋯
• Example: ℎ𝑟 = 11 → ℎ𝑟 = 12 → ℎ𝑟 = 1



Defini&on: Step

• Defini&on: A step consists of two consecu&ve states in a behavior
• aka transi.on
• Nota&on: 𝑠𝑡𝑎𝑡𝑒! → 𝑠𝑡𝑎𝑡𝑒"
• Example: ℎ𝑟 = 3 → ℎ𝑟 = 4



Defini&on: Specifica.on

• A specifica.on is a set of all possible behaviors
• Consists of two parts

1. Set of all possible ini)al states
2. A “next-state” relaKon that describes the ways a state may change in a step

• i.e., the set of all possible pairs of states



Set of Ini.al States

• Example: HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• Or, informally, HCini ≜ ℎ𝑟 ∈ { 1, ⋯ , 12 }
• HCini is simply a name given to the predicate

• A set of states can oJen be succinctly described by a predicate
• Example: HCini ≜ ℎ𝑟 ∈ ℕ ⋀1 ≤ ℎ𝑟 ⋀ℎ𝑟 ≤ 12

• Note again that these describe not 12 but an infinite set of states



Defini&on: Next-State Rela.on

• A next-state rela.on is a rela&on between pairs of successive states
• 𝑠𝑡𝑎𝑡𝑒!

"#$, 𝑠𝑡𝑎𝑡𝑒!
"%&' , 𝑠𝑡𝑎𝑡𝑒(

"#$, 𝑠𝑡𝑎𝑡𝑒(
"%&' , ⋯

• Example: 
• HCnxt ≜ { ( ℎ𝑟 = 11 , ℎ𝑟 = 12 ), ( ℎ𝑟 = 12 , ℎ𝑟 = 1 ), ⋯ }



Defini&on: Ac.on

• A next-state rela,on can o/en be more succinctly described by a predicate
• Defini,on 1: an ac#on is a predicate over a pair of states
• Example: HCnxt ≜ ℎ𝑟′ = ℎ𝑟 % 12 + 1 (% is the “modulo” operator)

• or, HCnxt2≜ ℎ𝑟′ = IF ℎ𝑟 = 12 THEN 1 ELSE ℎ𝑟 + 1
• But note that HCnxt2≢ HCnxt

• ℎ𝑟′ is the value of hr in the new state; ℎ𝑟 is the value in the old state
• Defini,on 2: an ac#on is a predicate containing both primed and unprimed 

variables
• An ordinary predicate and does not have to be of the form “x’ = f(x)”

• Example: HCnxt ≜ ℎ𝑟! − ℎ𝑟 = 1 mod 12



Steps versus Ac.ons versus Execu.on

• A step is a pair of states
• An ac.on 𝒜 is a predicate over steps
• We call a step that sa&sfies 𝒜 an 𝒜 step
• Example: a step that saKsfies HCnxt is an HCnxt step

• We some&mes informally say that HCnxt is executed



Example specifica-on: hour clock
(in complete isola-on)

Module HourClock
Variable hr
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻HCnxt

Temporal logic formula ◻P means that predicate P always holds
(thus HCnxt is invariant in HC)

Note:
1. All three statements are defini1ons, but the last one happens to cons1tute the full 

specifica1on of the hour clock)
2. There is no conven1onal naming in TLA+, so pick names that are descrip1ve



Defini&on: Stu=ering steps

• Clocks are usually part of a larger system
• They have more state variables than just the hour hand of the clock
• State changes must allow for hour hand not to change
• Example: [ℎ𝑟= 3. t𝑒𝑚𝑝 = 62] → [ℎ𝑟 = 3. t𝑒𝑚𝑝 = 63]

• This is called a stu6ering step of the clock
• i.e., ℎ𝑟) = ℎ𝑟



Final specifica&on: hardware clock

Module HourClock
• Variable ℎ𝑟
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻(HCnxt ⋁ (ℎ𝑟) = ℎ𝑟))

The laTer can be abbreviated using the following TLA+ notaKon

HC ≜ HCini ⋀◻[HCnxt]*#

([HCnxt]*# is pronounced ”square HCnxt sub hr”)



Defini&on: theorem

• Defini&on: in TLA+, a theorem of a specifica&on is a temporal formula 
that holds over every behavior of the specifica&on
• Example:  HC ⇒◻ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• That is, HC ⇒◻ HCini

• Proof: by induc&on on #steps



A note on variables and types

• Variables in TLA+ are untyped
• However, if one can prove  SPEC ⇒◻ 𝑣 ∈ 𝑆 for some variable 𝑣 and 

constant set 𝑆, then one can call 𝑆 the type of 𝑣 in SPEC
• Example: the type of ℎ𝑟 in HC is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• It is useful to specify the types in a specifica&on
• Example:   HCtypeInvariant ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• Note, in this case HCtypeInvariant ≡ HCini



A note on states and behaviors

• Recall
• A state is an assignment of values to variables
• A behavior is a sequence of states

• Thus
• ℎ𝑟 = 13 is sKll a state, and so is ℎ𝑟 = ”𝑏𝑙𝑢𝑒”
• ℎ𝑟 = 4 → ℎ𝑟 = 3 is sKll a behavior

• However, they are not in specifica&on HC



Recall

• A state is an assignment of values to all variables
• A step is a pair of states
• A stu6ering step wrt some variable leaves the variable unchanged
• An ac.on is a predicate over a pair of states
• If x is a variable in the old state, then x’ is the same variable in the new state

• A behavior is an infinite sequence of states (with an ini&al state)
• A specifica.on characterizes the ini&al state and ac&ons



Spec that generates all prime numbers



Spec that generates all prime numbers
------------------------------- MODULE prime -------------------------------
EXTENDS Naturals
VARIABLE p

isPrime(q) == q > 1 /\ \A r \in 2..(q-1): q%r /= 0

TypeInvariant == isPrime(p)

Init == p = 2
Next == p' > p /\ isPrime(p') /\ \A q \in (p+1)..(p'-1): ~isPrime(q)

Spec == Init /\ [] [Next]_p

THEOREM Spec => []TypeInvariant



Asynchronous FIFO Channel Specifica&on

Sender Receiver

val
rdy

ack

Send ≜ ∧ rdy = ack
∧ val’ ∈ 𝐷𝑎𝑡𝑎
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Recv ≜∧ rdy ≠ ack
∧ ack’ = 1 – ack
∧ val’ = val
∧ rdy’ = rdy



Asynchronous FIFO Channel Specifica&on

Send ≜ ∧ rdy = ack
∧ val’ ∈ 𝐷𝑎𝑡𝑎
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Recv ≜ ∧ rdy ≠ ack
∧ ack’ = 1 – ack
∧ val’ = val
∧ rdy’ = rdy

Init ≜ ∧ val ∈ 𝐷𝑎𝑡𝑎
∧ rdy ∈ { 0, 1 }
∧ ack = rdy

TypeInvariant ≜∧ val ∈ 𝐷𝑎𝑡𝑎
∧ rdy ∈ { 0, 1 }
∧ ack ∈ { 0, 1 }

Next ≜ 𝑆𝑒𝑛𝑑 ⋁𝑅𝑒𝑐𝑣 Spec ≜ Init ⋀◻[Next] !"#,%&',(%)



Asynchronous FIFO Channel Specifica-on
introducing operators with arguments

Send ≜ ∧ rdy = ack
∧ val’ ∈ 𝐷𝑎𝑡𝑎
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Next ≜

Send(d) ≜∧ rdy = ack
∧ val’ = 𝑑
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Next ≜ ∨ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑
∨ Recv

∨ 𝑆𝑒𝑛𝑑
∨ Recv



Asynchronous FIFO Channel Specifica-on
introducing records

Send(d) ≜ 𝑐ℎ𝑎𝑛.rdy = 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎𝑙 ⟼ 𝑑, 𝑟𝑑𝑦 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Init ≜ 𝑐ℎ𝑎𝑛.val ∈ 𝐷𝑎𝑡𝑎 ∧ 𝑐ℎ𝑎𝑛.rdy ∈ 0, 1 ∧ 𝑐ℎ𝑎𝑛.ack = 𝑐ℎ𝑎𝑛.rdy

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Next ≜ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑 ∨ Recv

Spec ≜ Init⋀◻[Next]0123

R𝑒𝑐𝑣 ≜ 𝑐ℎ𝑎𝑛.rdy ≠ 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎l ⟼ 𝑐ℎ𝑎𝑛. 𝑣𝑎𝑙, 𝑟𝑑𝑦 ⟼ 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]



Some more terms

• A state func.on is an ordinary expression with (unprimed) variables
• i.e., it is a funcKon of a state to a value
• note that a variable is a state funcKon

• A state predicate is a Boolean state func&on
• A temporal formula is an asser&on about behaviors
• A theorem of a specifica&on is a temporal formula that holds over 

every behavior of the specifica&on
• If 𝑆 is a specifica&on and 𝐼 is a predicate and 𝑆 ⇒ ☐𝐼 is a theorem 

then we call 𝐼 an invariant of 𝑆.



Temporal Formula
Based on Chapter 8 of Specifying Systems

• A temporal formula 𝐹 assigns a Boolean value to a behavior 𝜎
• 𝜎 ⊨ 𝐹 means that 𝐹 holds over 𝜎
• 𝐹 is a theorem if 𝜎⊨F holds over all behaviors 𝜎
• If 𝑃 is a state predicate, then 𝜎 ⊨ 𝑃 means that 𝑃 holds over the first 

state in 𝜎
• If 𝐴 is an ac&on, then 𝜎 ⊨ 𝐴 means that 𝐴 holds over the first 

two states in 𝜎
• i.e., the first step in 𝜎 is an 𝐴 step

• If 𝐴 is an ac&on, then 𝜎 ⊨ 𝐴 4 means that the first step in 𝜎 is an 𝐴
step or a stuZering step with respect to 𝑣



☐Always

• 𝜎 ⊨ ☐𝐹 means that 𝐹 holds over every suffix of 𝜎
• More formally
• Let 𝜎53 be 𝜎 with the first 𝑛 states removed
• Then 𝜎 ⊨ ☐𝐹 ≜ ∀𝑛 ∈ ℕ: 𝜎53 ⊨ 𝐹



Boolean combina&ons of temporal formulas

• 𝜎 ⊨ (𝐹 ∧ 𝐺) ≜ 𝜎 ⊨ 𝐹 ∧ 𝜎 ⊨ 𝐺
• 𝜎 ⊨ (𝐹 ∨ 𝐺) ≜ 𝜎 ⊨ 𝐹 ∨ 𝜎 ⊨ 𝐺
• 𝜎 ⊨ ¬𝐹 ≜ ¬ 𝜎 ⊨ 𝐹
• 𝜎 ⊨ 𝐹 ⇒ 𝐺 ≜ (𝜎 ⊨ 𝐹) ⇒ 𝜎 ⊨ 𝐺
• 𝜎 ⊨ (∃𝑟: 𝐹) ≜ ∃𝑟: 𝜎 ⊨ 𝐹
• 𝜎 ⊨ ∀𝑟 𝜖 𝑆: 𝐹 ≜ ∀𝑟 𝜖 𝑆: 𝜎 ⊨ 𝐹 // if 𝑆 is a constant set



Example
What is the meaning of 𝜎 ⊨ ☐( 𝑥 = 1 ⇒☐ 𝑦 > 0 ) ?

𝜎 ⊨ ☐( 𝑥 = 1 ⇒☐ 𝑦 > 0 )
≡ ∀𝑛 ∈ ℕ: 𝜎!" ⊨ ( 𝑥 = 1 ⇒☐ 𝑦 > 0 )
≡ ∀𝑛 ∈ ℕ: (𝜎!" ⊨ 𝑥 = 1) ⇒ (𝜎!" ⊨ ☐ 𝑦 > 0 )
≡ ∀𝑛 ∈ ℕ: (𝜎!" ⊨ 𝑥 = 1) ⇒ (∀𝑚 ∈ ℕ: 𝜎!" !# ⊨ 𝑦 > 0 )

If x = 1 in some state, then henceforth y > 0 in all subsequent states

Not: once x = 1, x will always be 1.  That would be
𝜎 ⊨ ☐( 𝑥 = 1 ⇒☐ 𝑥 = 1 )



Not every temporal formula is a TLA+ formula
• TLA+ formulas are temporal formulas that are invariant under stu,ering
• They hold even if you add or remove stuTering steps

• Examples
• 𝑃 if 𝑃 is a state predicate
• ☐𝑃 if 𝑃 is a state predicate
• ☐ 𝐴 + if 𝐴 is an acKon and 𝑣 is a state variable (or even state funcKon)

• But not
• 𝑥) = 𝑥 + 1 not saKsfied by 𝑥 = 1 ⟶ 𝑥 = 1 ⟶ 𝑥 = 2
• 𝑥) = 𝑥 + 1 , saKsfied by 𝑥 = 1 ⟶ 𝑥 = 1 ⟶ 𝑥 = 3

but not by 𝑥 = 1 ⟶ 𝑥 = 3
• Yet ☐ 𝑥6 = 𝑥 + 1 7 is a TLA+ formula!



Eventually F
◇𝐹 ≜ ¬☐¬𝐹

𝜎 ⊨ ◇𝐹
≡ 𝜎 ⊨ ¬☐¬𝐹
≡ ¬(𝜎 ⊨ ☐¬𝐹)
≡ ¬(∀𝑛 ∈ ℕ: 𝜎*+ ⊨ ¬𝐹)
≡ ¬(∀𝑛 ∈ ℕ: ¬(𝜎*+ ⊨ 𝐹))
≡ ∃𝑛 ∈ ℕ: (𝜎*+ ⊨ 𝐹)



Eventually an 𝐴 step occurs that changes v…

◇ 𝐴 ( ≜ ¬☐ ¬𝐴 (

𝜎 ⊨◇ 𝐴 (
≡ 𝜎 ⊨ ¬☐ ¬𝐴 (
≡ ¬(𝜎 ⊨ ☐ ¬𝐴 ()
≡ ¬(∀𝑛 ∈ ℕ: 𝜎*+ ⊨ ¬𝐴 ()
≡ ¬(∀𝑛 ∈ ℕ: 𝜎*+ ⊨ (¬𝐴 ∨ 𝑣, = 𝑣))
≡ ∃𝑛 ∈ ℕ: 𝜎*+ ⊨ 𝐴 ∧ 𝑣, ≠ 𝑣



HourClock revisited

Module HourClock
Variable 𝒉𝒓
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻[HCnxt]18

ℎ𝑟 is a parameter of the specifica&on HourClock



HourClock with liveness
clock that never stops

Module HourClock
Variable ℎ𝑟
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻[HCnxt]18
• LiveHC ≜ HC ⋀☐(◇ HCnxt 18)



Module Channel with Liveness

Send(d) ≜ 𝑐ℎ𝑎𝑛.rdy = 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎𝑙 ⟼ 𝑑, 𝑟𝑑𝑦 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Init ≜ 𝑐ℎ𝑎𝑛.val ∈ 𝐷𝑎𝑡𝑎 ∧ 𝑐ℎ𝑎𝑛.rdy ∈ 0, 1 ∧ 𝑐ℎ𝑎𝑛.ack = 𝑐ℎ𝑎𝑛.rdy

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Next ≜ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑 ∨ Recv

Spec ≜ Init⋀◻[Next]0123

R𝑒𝑐𝑣 ≜ 𝑐ℎ𝑎𝑛.rdy ≠ 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎l ⟼ 𝑐ℎ𝑎𝑛. 𝑣𝑎𝑙, 𝑟𝑑𝑦 ⟼ 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Variable 𝑐ℎ𝑎𝑛Constant 𝐷𝑎𝑡𝑎

𝐿𝑖𝑣𝑒𝑆𝑝𝑒𝑐 ≜ 𝑆𝑝𝑒𝑐 ⋀☐(◇⟨𝑁𝑒𝑥𝑡⟩0123)  ???



Module Channel with Liveness

Send(d) ≜ 𝑐ℎ𝑎𝑛.rdy = 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎𝑙 ⟼ 𝑑, 𝑟𝑑𝑦 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Init ≜ 𝑐ℎ𝑎𝑛.val ∈ 𝐷𝑎𝑡𝑎 ∧ 𝑐ℎ𝑎𝑛.rdy ∈ 0, 1 ∧ 𝑐ℎ𝑎𝑛.ack = 𝑐ℎ𝑎𝑛.rdy

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Next ≜ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑 ∨ Recv

Spec ≜ Init⋀◻[Next]0123

R𝑒𝑐𝑣 ≜ 𝑐ℎ𝑎𝑛.rdy ≠ 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎l ⟼ 𝑐ℎ𝑎𝑛. 𝑣𝑎𝑙, 𝑟𝑑𝑦 ⟼ 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Variable 𝑐ℎ𝑎𝑛Constant 𝐷𝑎𝑡𝑎

𝐿𝑖𝑣𝑒𝑆𝑝𝑒𝑐 ≜ 𝑆𝑝𝑒𝑐 ⋀☐(◇⟨𝑁𝑒𝑥𝑡⟩0123)  ???

Too Strong --- If nothing 
to send that should be ok



Module Channel with Liveness

Send(d) ≜ 𝑐ℎ𝑎𝑛.rdy = 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎𝑙 ⟼ 𝑑, 𝑟𝑑𝑦 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Init ≜ 𝑐ℎ𝑎𝑛.val ∈ 𝐷𝑎𝑡𝑎 ∧ 𝑐ℎ𝑎𝑛.rdy ∈ 0, 1 ∧ 𝑐ℎ𝑎𝑛.ack = 𝑐ℎ𝑎𝑛.rdy

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Next ≜ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑 ∨ Recv

Spec ≜ Init⋀◻[Next]0123

R𝑒𝑐𝑣 ≜ 𝑐ℎ𝑎𝑛.rdy ≠ 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎l ⟼ 𝑐ℎ𝑎𝑛. 𝑣𝑎𝑙, 𝑟𝑑𝑦 ⟼ 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Variable 𝑐ℎ𝑎𝑛Constant 𝐷𝑎𝑡𝑎

𝐿𝑖𝑣𝑒𝑆𝑝𝑒𝑐 ≜ 𝑆𝑝𝑒𝑐 ⋀☐(𝑐ℎ𝑎𝑛. rdy ≠ 𝑐ℎ𝑎𝑛. ack ⇒ ◇⟨𝑅ecv⟩0123) 



Weak Fairness as a liveness condi&on

• ENABLED ⟨𝐴⟩4 means ac&on A is possible in some state
• State predicate conjuncts all hold and some next state must exist

• 𝑊𝐹4 𝐴 ≜ ☐(☐ENABLED 𝐴 4 ⇒ ◇⟨𝐴⟩4)

• HourClock: 𝑊𝐹18(𝐻𝐶𝑛𝑥𝑡)
• Channel: 𝑊𝐹0123(𝑅𝑒𝑐𝑣)



(surprising) Weak Fairness equivalence

• 𝑊𝐹4 𝐴 ≜ ☐(☐ENABLED 𝐴 4 ⇒ ◇ 𝐴 4)
≡ ☐◇ ¬ENABLED 𝐴 4 ∨☐◇⟨𝐴⟩4
≡ ◇☐ ENABLED 𝐴 4 ⇒ ☐◇ 𝐴 4

• Always, if 𝐴 is enabled forever, then an 𝐴 step eventually occurs
• 𝐴 is infinitely oJen disabled or infinitely many 𝐴 steps occur
• If 𝐴 is eventually enabled forever then infinitely many 𝐴 steps occur



Strong Fairness
• 𝑆𝐹4 𝐴 ≜ ◇☐ ¬ENABLED 𝐴 4 ∨☐◇⟨𝐴⟩4

≡ ☐◇ ENABLED 𝐴 4 ⇒ ☐◇ 𝐴 4

• 𝐴 is eventually disabled forever or infinitely many 𝐴 steps occur
• If 𝐴 is infinitely oJen enabled then infinitely many 𝐴 steps occur

𝑆𝐹4 𝐴 : an 𝐴 step must occur if 𝐴 is con&nually enabled
𝑊𝐹4 𝐴 : an 𝐴 step must occur if 𝐴 is con&nuously enabled

As always, be,er to make the weaker assumpCon if you can



How important is liveness?

• Liveness rules out behaviors that have only stuZering steps
• Add non-triviality of a specificaKon

• In prac&ce, “eventual” is oJen not good enough
• Instead, need to specify performance requirements
• Service Level ObjecKves (SLOs)
• Usually done quite informally



A “FIFO”  (async buffered FIFO channel)
Chapter 4 from Specifying Systems

Sender buffer Receiver
in out

channels

environment



Module Channel

Send(d) ≜ 𝑐ℎ𝑎𝑛.rdy = 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎𝑙 ⟼ 𝑑, 𝑟𝑑𝑦 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Init ≜ 𝑐ℎ𝑎𝑛.val ∈ 𝐷𝑎𝑡𝑎 ∧ 𝑐ℎ𝑎𝑛.rdy ∈ 0, 1 ∧ 𝑐ℎ𝑎𝑛.ack = 𝑐ℎ𝑎𝑛.rdy

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Next ≜ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑 ∨ Recv

Spec ≜ Init⋀◻[Next]0123

R𝑒𝑐𝑣 ≜ 𝑐ℎ𝑎𝑛.rdy ≠ 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎l ⟼ 𝑐ℎ𝑎𝑛. 𝑣𝑎𝑙, 𝑟𝑑𝑦 ⟼ 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

V𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝒄𝒉𝒂𝒏Constant 𝑫𝒂𝒕𝒂



Instan&a&ng a Channel

𝐼𝑛𝐶ℎ𝑎𝑛 ≜ INSTANCE 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 WITH 𝐷𝑎𝑡𝑎 ← 𝑀𝑒𝑠𝑠𝑎𝑔𝑒, 𝑐ℎ𝑎𝑛 ← 𝑖𝑛

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

InChan!TypeInvariant ≡ 𝑖𝑛 ∈ 𝑣𝑎𝑙:𝑀𝑒𝑠𝑠𝑎𝑔𝑒, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Instan&a&on is Subs&tu&on!









Parametrized Instan&a&on

𝐼𝑛𝐶ℎ𝑎𝑛 ≜ INSTANCE 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 WITH 𝐷𝑎𝑡𝑎 ← 𝑀𝑒𝑠𝑠𝑎𝑔𝑒, 𝑐ℎ𝑎𝑛 ← 𝑖𝑛

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Chan(in)!TypeInvariant ≡ 𝑖𝑛 ∈ 𝑣𝑎𝑙:𝑀𝑒𝑠𝑠𝑎𝑔𝑒, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

𝐶ℎ𝑎𝑛(𝑐ℎ) ≜ INSTANCE 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 WITH 𝐷𝑎𝑡𝑎 ← 𝑀𝑒𝑠𝑠𝑎𝑔𝑒, 𝑐ℎ𝑎𝑛 ← 𝑐ℎ



Internal (= Non-Interface) Variables

buffer
in out There is no q here

But there is a q here

Not incorrect, but don’t really want q to be a specificaEon parameter



Hiding Internal Variables



Hiding Internal Variables

Not the normal existen&al quan&fier!!!

In temporal logic, this means that for every state in a 
behavior, there is a value for q that makes Inner(q)!Spec true



PreSy.  Now for something cool!

• Suppose we wanted to implemented a bounded buffer
• That is, ◻𝑙𝑒𝑛 𝑞 ≤ 𝑁 for some constant 𝑁 > 0
• The only place where q is extended is in BufRcv



PreSy.  Now for something cool!

• Suppose we wanted to implemented a bounded buffer
• That is, ◻𝑙𝑒𝑛 𝑞 ≤ 𝑁 for some constant 𝑁 > 0
• The only place where q is extended is in BufRcv

∧ 𝑙𝑒𝑛 𝑞 < 𝑁



Even cooler (but tricky)

If it is a BufRcv step, 
then 𝑙𝑒𝑛 𝑞 < 𝑁



Even cooler (but tricky)



Refinement
Based on material from SecKon 10.8, Specifying Systems by Leslie Lamport



You ask for:

Specifica&on



You ask for: You get:

Specifica&on
Implementa&on



You ask for: You get:

Specifica&on
Implementa&on

Is every behavior of the implementaCon also a behavior of the specificaCon?



You ask for: You get:

Specifica&on
Implementa&on

Is every behavior of the implementaCon also a behavior of the specificaCon?

Refinement 
Mapping



External/internal variables of a state

• A specifica&on has certain external variables that can be observed 
and/or manipulated
• It may also have internal variables that are used to describe behaviors 

but that cannot be observed
• Example:  FIFO
• External variables: in, out
• Internal variable:  buffer

buffer
in out

channels



Externally visible vs complete behavior

A system may exhibit externally visible behavior
𝑒! → 𝑒" → 𝑒/ → 𝑒? → …

if there exists a complete behavior 
𝑒!, 𝑦! → 𝑒", 𝑦" → 𝑒/, 𝑦/ → 𝑒?, 𝑦? →

that is allowed by the specifica&on

Here 𝑒@ is some externally visible state (for example, in and out 
channels) and 𝑦@ is internal state (for example, the buffer)



StuSering Steps

A specifica&on should allow changes to the internal state that does not 
change the externally visible state.
For example:

𝑒!, 𝑦! → 𝑒", 𝑦" → 𝑒", 𝑦"6 → 𝑒/, 𝑦/ → 𝑒?, 𝑦? →
leads to external behavior

𝑒! → 𝑒" → 𝑒" → 𝑒/ → 𝑒? → …
which should be iden&cal (up to stuZering) to

𝑒! → 𝑒" → 𝑒/ → 𝑒? → …



Proving that an implementa-on meets the specifica-on
• First note that an implementa&on is just a specifica&on
• We call the implementa&on the “lower-level” specifica&on

We need to prove that if an implementa&on allows the complete behavior
𝑒!, 𝑧! → 𝑒", 𝑧" → 𝑒/, 𝑧/ → 𝑒?, 𝑧? →

then there exists a complete behavior
𝑒!, 𝑦! → 𝑒", 𝑦" → 𝑒/, 𝑦/ → 𝑒?, 𝑦? →

allowed by the specifica&on

A mapping from low-level complete behaviors to high-level complete 
behaviors is called a “refinement mapping”
Note, there may be mul&ple possible refinement mappings---you only need to 
show one



It’s not always possible to get a refinement L



Binary Consensus, Specifica2on

Only 0
proposed

0 and 1 
proposed

Only 1
proposed

0
chosen

1
chosen

0
learned

1
learned



Paxos

• Value is chosen if a quorum of proposers have all accepted the value 
on the same ballot
• This suggest an easy mapping of the Paxos state to the consensus 

state



Problem 1: lack of history

• Unfortunately, Paxos acceptors only remember the latest value they 
accepted
• So while there may exists a majority that have all accepted the value 

at &me t, that majority may no longer exist at &me t+1
• Even though it is guaranteed that no other value will ever be chosen



Fix 1: add history variables

• We can add a “ghost variable” to each acceptor that remembers all 
(value, ballot) pairs it has ever accepted
• “ghost” means that it does not actually have to be realized

• With this “history variable”, we can exhibit a state mapping



Problem 2: outrunning the specifica2on

• A refinement mapping maps each step of the low-level specifica&on 
to either one step of the high-level specifica&on or a stuZering step of 
the high-level specifica&on
• In Paxos, when f=1 and n=3, the following scenario is possible:
• Leader proposes a (value, ballot)
• Some acceptor accepts (value, ballot)
• In that one step:

• The value is chosen
• The acceptor learns that the value is chosen (decided)

• However, our high-level consensus spec requires two steps:
• From undecided to chosen and from chosen to learned



Fix 2: two possibili2es

• Change the high-level spec to include a “choose + learn” step
• i.e., speed up the high-level spec
• complicates the high-level specificaFon
• changing the specificaFon may not be allowed

• Add a ghost “prophecy variable” to the low-level specifica&on
• slow down the low-level spec
• arFficially insert a step between accepFng and learning by changing the 

prophecy variable
• does not change either the implementaFon or the high-level spec



Completeness

• If S1 implements S2 then, possibly by adding history and prophecy 
variables, there exists a refinement mapping from S2 to S1 (under 
certain reasonable assump&ons)

See Mar&n Abadi and Leslie Lamport, “The Existence of Refinement 
Mappings”



Wri9ng Specs



Why specify?

• To avoid errors!
• wriFng a spec idenFfies corner cases
• allows automated checking

• model checking / verifica@on

• To clarify communica&on between designers and builders
• which avoids errors too…



What to specify?

• Start with the most difficult pieces
• those pieces that are most likely to have errors in it

• Grain of atomicity
• Too coarse may fail to reveal important details
• Too fine may make the spec unwieldy



When to specify

• Ideally before system is implemented
• find errors early!

• In reality, oJen implementa&on provides addi&onal insights that may 
require chances to the specifica&on
• try to minimize this---changing the spec a lot wastes dollars and can even kill 

enFre projects

• In prac&ce, not unusual to write spec aJer an implementa&on is 
completed
• because specs make good documentaFon



General hints

• Keep it simple, stupid (KISS principle)
• spec must be clear

• Don’t be too abstract
• may overlook details that are important in a real system

• Write comments


