Specifying Systems (using TLA+)

Based on Leslie Lamport’s book “Specifying Systems”



Definition: State

* Definition: A state is an assignment of values to (all) variables

* TLA+ notation: [var; = value;, var, = value,, - |
* Meaning: a state in which vary has value valuey, -
e Order is immaterial

* Example: [hr = 3]
* Meaning: a state in which hr = 3
* The values of other variables are not specified
* There can be many infinitely many states in which hr = 3
* e.g. [hr =3.temp = 62], [hr = 3. temp = 68], ...
* Models perhaps the hour hand being 3 on some hour clock HC



Definition: Behavior

* Definition 1: A behavior is a function of time to state
Computer systems can be thought of as executing in steps, so
e Definition 2: A behavior is a sequence of states

* Notation: state, — state, — state; — -
* Example: |[hr = 11| - [hr = 12] - [hr = 1]



Definition: Step

* Definition: A step consists of two consecutive states in a behavior
* aka transition

* Notation: state; — state,

* Example: |[hr = 3] -» |hr = 4]



Definition: Specification

* A specification is a set of all possible behaviors

* Consists of two parts
1. Set of all possible initial states

2. A “next-state” relation that describes the ways a state may change in a step
* i.e., the set of all possible pairs of states



Set of Initial States

* Example: HCini 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e Or, informally, HCini2 hr e{1,--,12}
* HCini is simply a name given to the predicate

* A set of states can often be succinctly described by a predicate
e Example: HCini2 hr e NA1 < hr Ahr <12

* Note again that these describe not 12 but an infinite set of states



Definition: Next-State Relation

* A next-state relation is a relation between pairs of successive states

» {(stateP™®, stateP**"), (statel™®, statel?*"), .-}

* Example:
 HCnxt £ {(|hr = 11], [hr = 12]), (lhr = 12], |hr = 1]),--- }



Definition: Action

* A next-state relation can often be more succinctly described by a predicate
* Definition 1: an action is a predicate over a pair of states

e Example: HCnxt 2 hr' = hr % 12+ 1 (% is the “modulo” operator)
 or, HCnxt, 2 hr' = IF hr = 12 THEN 1 ELSE hr + 1
* But note that HCnxt, # HCnxt

* hr' is the value of hr in the new state; hr is the value in the old state

* Definition 2: an action is a predicate containing both primed and unprimed
variables

* An ordinary predicate and does not have to be of the form “x’ = f(x)”
* Example: HCnxt £ hr' — hr = 1 mod 12



Steps versus Actions versus Execution

* A step is a pair of states
* An action A is a predicate over steps

* We call a step that satisfies <A an A step
* Example: a step that satisfies HCnxt is an HCnxt step

* We sometimes informally say that HCnxt is executed



Example specification: hour clock
(in complete isolation)

Module HourClock

Variable hr

 HCini2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e HCnxt £ hr' = hr mod 12 + 1

* HC £ HCini A OHCnxt

Temporal logic formula OP means that predicate P always holds
(thus HCnxt is invariant in HC)

Note:

1.  All three statements are definitions, but the last one happens to constitute the full
specification of the hour clock)

2. Thereis no conventional naming in TLA+, so pick names that are descriptive



Definition: Stuttering steps

* Clocks are usually part of a larger system
* They have more state variables than just the hour hand of the clock

* State changes must allow for hour hand not to change
* Example: [hr=3.temp = 62] - [hr = 3. temp = 63]

* This is called a stuttering step of the clock
e j.e., hr' = hr



Final specification: hardware clock

Module HourClock
e Variable hr

 HCini 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }

e HCnxt £ hr' = hr mod 12 + 1

e HC £ HCini A O(HCnxt V (hr’ = hr))

The latter can be abbreviated using the following TLA+ notation

HC £ HCini A O[HCnxt],

([HCnxt];, is pronounced “square HCnxt sub hr”)



Definition: theorem

* Definition: in TLA+, a theorem of a specification is a temporal formula
that holds over every behavior of the specification

 Example: HC= 0O hr €{1,2,3,4,5,6,7,8,9,10,11,12 }
 Thatis, HC = O HCini

* Proof: by induction on #steps



A note on variables and types

 Variables in TLA+ are untyped

* However, if one can prove SPEC= O v € S for some variable v and
constant set S, then one can call S the type of v in SPEC

* Example: the type of hrinHCis {1, 2,3,4,5,6,7,8,9,10,11,12 }

* It is useful to specify the types in a specification

* Example: HCtypelnvariant 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
* Note, in this case HCtypelnvariant = HCini



A note on states and behaviors

* Recall
* A state is an assignment of values to variables
* A behavior is a sequence of states

e Thus

o [hr = 13] is still a state, and so is [hr = "blue”]
o |[hr = 4] - |hr = 3] is still a behavior

* However, they are not in specification HC



Recall

e A state is an assignment of values to all variables
e A step is a pair of states
* A stuttering step wrt some variable leaves the variable unchanged

* An action is a predicate over a pair of states
* |If xis a variable in the old state, then x’ is the same variable in the new state

* A behavior is an infinite sequence of states (with an initial state)
* A specification characterizes the initial state and actions



Spec that generates all prime numbers

| MODULE prime
EXTENDS Naturals
VARIABLE p

isPrime(q) = ¢>1AVre2..(¢g—1):q%r#0
Typelnvariant = isPrime(p)

Init = p=2
Next = p' > p AisPrime(p’) AV q € (p+1)..(p' — 1) : ~isPrime(q)

A

Spec = Init A O[Nezt],

THEOREM Spec = O Typelnvariant




Spec that generates all prime numbers

EXTENDS Naturals
VARIABLE p

isPrime(q) ==g>1/\\Ar\in 2..(g-1): q%r /=0
Typelnvariant == isPrime(p)

Init==p =2
Next == p' > p /\ isPrime(p') /\ \A g \in (p+1)..(p'-1): ~isPrime(q)

Spec == Init /\ [] [Next]_p

THEOREM Spec => []Typelnvariant



Asynchronous FIFO Channel Specification

val

. >
ray >
Sender Receiver
< ack
Send = A rdy=ack Recv =A rdy # ack
Aval € Data A ack’ =1—ack
Ardy =1-rdy A val =val

N ack’ = ack

A rdy’ =rdy



Asynchronous FIFO Channel Specification

Typelnvariant = A val € Data Init = Aval € Data
Ardye{0,1} Ardye{0,1}
Nacke {0,1} A ack = rdy
Send = A rdy=ack Recv = A rdy # ack
Aval € Data A ack’ =1-ack
Ardy =1-rdy Aval =val
A ack’ = ack A rdy’ =rdy

Next 2 Send \ Recv Spec £ |nit A

[NeXt](rdy,ack,val)



Asynchronous FIFO Channel Specification

introducing operators with arguments

Send & A rdy = ack » Send(d) £ A rdy = ack

Aval € Data Avall =d
Ardy =1-rdy Ardy =1-rdy
N ack’ = ack N ack’ = ack
Next & V Send m) Next2 v3id € Data: Send(d)

V Recv V Recv



Asynchronous FIFO Channel Specification
introducing records

Typelnvariant £ chan € |val: Data,rdy:{0,1}, ack: {0,1}]
Init 2 chan.val € Data A chan.rdy € { 0,1 } A chan.ack = chan.rdy

Send(d) £ chan.rdy = chan.ack A\ chan’ =
| val — d,rdy — 1 — chan.rdy, ack — chan. ack |

Recv £ chan.rdy # chan.ack A chan’ =
| val — chan.val,rdy — chan.rdy,ack — 1 — chan. ack |

Next 2 3d € Data: Send(d) V Recv

Spec £ Init/\ O[Next] pan



Some more terms

* A state function is an ordinary expression with (unprimed) variables
* j.e., itis a function of a state to a value
* note that a variable is a state function

* A state predicate is a Boolean state function
* A temporal formula is an assertion about behaviors

* A theorem of a specification is a temporal formula that holds over
every behavior of the specification

* If S is a specification and [ is a predicate and S = LI is a theorem
then we call I an invariant of S.




emporal Formula
Based on Chapter 8 of Specifying Systems

* A temporal formula F assigns a Boolean value to a behavior o
* 0 = F means that F holds over o
* I is a theorem if oi=F holds over all behaviors o

* If P is a state predicate, then o = P means that P holds over the first
statein o

* If A is an action, then o E A means that A holds over the first
two states in o
* j.e., the first step in o is an A step

* If A is an action, then o E [A], means that the first stepin o isan A
step or a stuttering step with respect to v



Always

* 0 = LJF means that F holds over every suffix of o

* More formally
e Let 0™ be g with the first n states removed
e Theno EF 2 VneN: gt "EF




Boolean combinations of temporal formulas

o E(FAG)2(0cEF)N (0 EG)

coE(FVG) 2(cEF)V (o EG)
coE-F2-(cEF)

o E(F=2G)2(0EF)=> (0 kFG)
coE@r:F)£3r:c EF

ok (VreS:F)2VreS:cF //ifSisaconstant set



Example

What is the meaningof o = [((x = 1) = L(y > 0))?

Q
T

((x =1)=>0U( > 0))

VneEN: o™ E ((x =1)=0O(y > 0))

VnEN: (c™E(x=1)= (™ =0y > 0))

VneEN: (6™ EMx=1)=>(VmeN: (™)™ E (y > 0))

If x =1 in some state, then henceforth y > 0 in all subsequent states

Not: once x = 1, x will always be 1. That would be
ced((x=1)=>0(x=1))




Not every temporal formula is a TLA+ formula

* TLA+ formulas are temporal formulas that are invariant under stuttering
* They hold even if you add or remove stuttering steps

* Examples
 Pif P is a state predicate
e [ 1P if P is a state predicate
« [1[A], if Ais an action and v is a state variable (or even state function)

* But not
ex'=x+1 not satisfied by [x = 1] — [x = 1] — [x = 2]
e [x'=x+1], satisfied by [x = 1] —> [x = 1] — [x = 3]

but not by [x = 1] — [x = 3]
* Yet |x’ = x + 1], is a TLA+ formula!




Eventually F

OF & 1[-F
ok OF
=0 E L4 F

—|(0'|= —|F)

—(Vn € N: oth E —F)
—(Vn € N: —|(O'+n = F))
=3In €N: (67" EF)



Eventually an A step occurs that changes v...

ok <O (4),

[_'A]v

=(o = U[-=4],)

—(Vn € N: otm E [_IA]v)

—(Vn € N:og™" E (A Vv = v))
IneN: 6™ E(A ANV #v)

Q
T
d




HourClock revisited

Module HourClock
Variable hr

hr is a parameter of the specification HourClock

* HCini 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e HCnxt 2 hr' = hr mod 12 + 1
* HC = HCini A O[HCnxt];,,




HourClock with liveness
clock that never stops

Module HourClock

Variable hr

 HCini2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e HCnxt 2 hr' = hr mod 12 + 1

 HC = HCini A O[HCnxt];,,

* LiveHC £ HC A OJ(<®(HCnxt),,-)




Module Channel with Liveness

Constant Data Variable chan
Typelnvariant £ chan € |val: Data,rdy:{0,1}, ack: {0,1}]

Init 2 chan.val € Data A chan.rdy € { 0,1 } A chan.ack = chan.rdy

Send(d) £ chan.rdy = chan.ack A\ chan’ =
| val — d,rdy — 1 — chan.rdy, ack — chan. ack |

Recv £ chan.rdy # chan.ack A chan’ =
| val — chan.val,rdy — chan.rdy,ack — 1 — chan. ack |

Next 2 3d € Data: Send(d) V Recv

Spec = Init/\ O[Next] pan LiveSpec £ Spec AU(O(Next)cnan) 2?7




Module Channel with Liveness

Constant Data Variable chan
Typelnvariant £ chan € |val: Data,rdy:{0,1}, ack: {0,1}]
Init 2 chan.val € Data A chan.rdy € { 0,1 } A chan.ack = chan.rdy

Send(d) £ chan.rdy = chan.ack A chan’ =
| val — d,rdy — 1 — chan.rdy, ack +— chan. ack |

Recv £ chan.rdy # chan.ack A cha

[ val — chan.val, ra Too Strong - If nothing

to send that should be ok |l chan. ack |

Next 2 3d € Data: Send(d) V Recv

Spec £ Init/\ O[Next] yqn LiveSpec £ Spec ALI(O(Next) pgn) 2?7




Module Channel with Liveness

Constant Data Variable chan
Typelnvariant £ chan € |val: Data,rdy:{0,1}, ack: {0,1}]
Init 2 chan.val € Data A chan.rdy € { 0,1 } A chan.ack = chan.rdy

Send(d) £ chan.rdy = chan.ack A\ chan’ =
| val — d,rdy — 1 — chan.rdy, ack — chan. ack |

Recv £ chan.rdy # chan.ack A chan’ =
| val — chan.val,rdy — chan.rdy,ack — 1 — chan. ack |

Next 2 3d € Data: Send(d) V Recv

Spec £ Init\ O[Next] nhan

LiveSpec £ Spec ANU(chan.rdy # chan.ack = <$(Recv) pan)




Weak Fairness as a liveness condition

- ENABLED (A),, means action A is possible in some state
 State predicate conjuncts all hold and some next state must exist

* WE,(A) 2 O(OeNaBLED (A), = O(A)y)

* HourClock: WF;,.(HCnxt)
* Channel: WF_ ., 4n(Recv)



(surprising) Weak Fairness equivalence

s WE,(A) £ (LJENABLED (A)v = <><A>v)
= [ (—enaBLed (A),) V IO (A),
= OO(enaBLED (A),,) = OO (A),

* Always, if A is enabled forever, then an A step eventually occurs
* A is infinitely often disabled or infinitely many A steps occur
* If A is eventually enabled forever then infinitely many A steps occur



Strong Fairness

* SE,(A) £ OO(—enaBLe (A),) V LIO(A),
= [ (ENABLED (A),) = O(A4),

* A is eventually disabled forever or infinitely many A steps occur
* If A is infinitely often enabled then infinitely many A steps occur

SE,(A): an A step must occur if A is continually enabled
WE,(A): an A step must occur if A is continuously enabled

As always, better to make the weaker assumption if you can



How important is liveness?

* Liveness rules out behaviors that have only stuttering steps
* Add non-triviality of a specification

III

* In practice, “eventual” is often not good enough

* Instead, need to specify performance requirements
* Service Level Objectives (SLOs)
* Usually done quite informally



A “FIFO” (async buffered FIFO channel)
Chapter 4 from Specifying Systems

channels

N out _
Sender 1 buffer Receiver

\\\\\\\\\envwonnuﬂﬂ/////////



Module Channel

Constant Data Variable chan
Typelnvariant £ chan € |val: Data,rdy:{0,1}, ack: {0,1}]
Init 2 chan.val € Data A chan.rdy € { 0,1 } A chan.ack = chan.rdy

Send(d) £ chan.rdy = chan.ack A\ chan’ =
| val — d,rdy — 1 — chan.rdy, ack — chan. ack |

Recv £ chan.rdy # chan.ack A chan’ =
| val — chan.val,rdy — chan.rdy,ack — 1 — chan. ack |

Next 2 3d € Data: Send(d) V Recv

Spec £ Init\ O[Next] nhan



Instantiating a Channel

InChan £ INSTANCE Channel WITH Data <« Message,chan « in

Typelnvariant £ chan € [val: Data,rdy:{0,1}, ack:{0,1}]

!

InChan!Typelnvariant = in € |val: Message,rdy:{0,1}, ack: {0,1}]

Instantiation is Substitution!



MODULE InnerFIFO

EXTENDS Naturals, Sequences
CONSTANT Message
VARIABLES n, out, ¢

InChan = INSTANCE Channel WITH Data < Message, chan « in
- OutChan = INSTANCE Channel WITH Data < Message, chan < out

A

IInz’t = A InChan!Init
A OutChan! Init
Agq= )

A

A InChan! Typelnvariant
A OutChan! Typelnvariant
A q € Seq(Message)

Typelnvariant



SSend(msg) = A InChan!Send(msg) Send msg on channel in.
A UNCHANGED (out, q)

BufRecv = A InChan!Rcv Receive message from channel in
A q' = Append(q, in.val) and append it to tail of gq.
A UNCHANGED out

BufSend = N\ q 75 () Enabled only if ¢ is nonempty.
A OutChan!Send(Head(q)) Send Head(q) on channel out
A q¢' = Tail(q) and remove it from gq.
A UNCHANGED in

RRcv = A OutChan!Rcv Receive message from channel out.

A UNCHANGED (in, q)



Next = V Imsg € Message : SSend(msg)
V BufRcv
V BufSend

V RRcv

A

Spec = Init N\ [Nefl?t](in,out,q)

THEOREM Spec = O Typelnvariant




Parametrized Instantiation

InChan £ INSTANCE Channel WITH Data <« Message,chan « in

\ 4

Chan(ch) = INSTANCE Channel WITH Data < Message,chan « ch

Typelnvariant £ chan € [val: Data,rdy:{0,1}, ack: {0,1}]

\ 4

Chan(in)!Typelnvariant = in € [val: Message,rdy:{0,1}, ack:{0,1}]



Internal (= Non-Interface) Variables

n ouffer | OUL There is no g here

| MODULE InnerFIFQO

EXTENDS Naturals, Sequences
CONSTANT Message
VARIABLES in, out, ¢  Butthereisa g here

Not incorrect, but don’t really want g to be a specification parameter



Hiding Internal Variables
MODULE FIFO

CONSTANT Message
VARIABLES 1n, out

Inner(q) = INSTANCE InnerFIFO

A

Spec = dgq : Inner(q)!Spec



Hiding Internal Variables
MODULE FIFQO

CONSTANT Message
VARIABLES n, out

Inner( 2 INSTANCE InnerFIFO
Spec é @ Inner(q)! Spec

Not the normal existential quantifier!!!

In temporal logic, this means that for every state in a
behavior, there is a value for g that makes Inner(qg)!Spec true



Pretty. Now for something cool!

e Suppose we wanted to implemented a bounded buffer
* Thatis, Olen(q) < N for some constant N >0
* The only place where g is extended is in BufRcv

A
BufRcv = A InChan!Rcv
A q' = Append(q, in.val)
/A UNCHANGED out



Pretty. Now for something cool!

e Suppose we wanted to implemented a bounded buffer
* Thatis, Olen(q) < N for some constant N >0
* The only place where g is extended is in BufRcv

BufRcv = A InChan!Rev
A q' = Append(q, in.val)
/A UNCHANGED out
Alen(qg) < N



Even cooler (but tricky)

MODULE BoundedFIFQO

EXTENDS Naturals, Sequences
VARIABLES in, out
CONSTANT Message, N

ASSUME (N € Nat) A (N > 0)

Inner(q) = INSTANCE InnerFIFO
BNezt(q) = A Inner(q)!Next

A Inner(q)! BufRcv = (Len(q) < N)
Spec = 3q : Inner(q)!Init A O[BNext(q)](in,out,q)

/

\

If it is a BufRcv step,

thenlen(q) < N

)




Even cooler (but tricky)

MODULE BoundedFIFQO

EXTENDS Naturals, Sequences
VARIABLES in, out
CONSTANT Message, N

ASSUME (N € Nat) A (N > 0)
INSTANCE InnerFIFQO

A Inner(q)! Next
A Inner(q)! BufRcv = (Len(q) < N)

[Spec = 3gq : Inner(q)!Init A El[BNe:z:t(q)]Un,out,q)J

Inner(q)
BNext(q)

el




Refinement

Based on material from Section 10.8, Specifying Systems by Leslie Lamport



You ask for:

Specification



You ask for: You get:

Implementation

Specification



You ask for: You get:

Implementation

Specification

Is every behavior of the implementation also a behavior of the specification?



You ask for: You get:

Refinement

Mapping

Implementation
Specification

Is every behavior of the implementation also a behavior of the specification?



External/internal variables of a state

* A specification has certain external variables that can be observed
and/or manipulated

* It may also have internal variables that are used to describe behaviors
but that cannot be observed

channels
* Example: FIFO
e External variables: in, out
* Internal variable: buffer
N out

buffer




Externally visible vs complete behavior

A system may exhibit externally visible behavior
€1 > €y, > €3 ey > ..
if there exists a complete behavior

(elJyl) - (6’2»3’2) - (63' yS) - (84,y4) -
that is allowed by the specification

Here e; is some externally visible state (for example, in and out
channels) and y; is internal state (for example, the buffer)



Stuttering Steps

A specification should allow changes to the internal state that does not
change the externally visible state.

For example:

(e1,¥1) = (e2,¥2) — (e2,y2) = (e3,y3) = (€4, Y4) —
leads to external behavior

€1 > €y, D€, D3 > ey ..
which should be identical (up to stuttering) to

e > €, D> e3 >ey > ..



Proving that an implementation meets the specification

* First note that an implementation is just a specification

* We call the implementation the “lower-level” specification

We need to prove that if an implementation allows the complete behavior
(e1,21) = (e2,23) — (e3,23) = (€4,24) —

then there exists a complete behavior
(31; yl) - (82' yZ) - (63'3/3) - (64' y4) -

allowed by the specification

A mapping from low-level complete behaviors to high-level complete
behaviors is called a “refinement mapping”

Note, there may be multiple possible refinement mappings---you only need to
show one



't’s not always possible to get a refinement ®



Binary Consensus, Specification

Only 0

proposed
: [ :
learned
Oand 1 ‘
proposed
. — :
learned
Only 1 ‘II

proposed




Paxos

* Value is chosen if a quorum of proposers have all accepted the value
on the same ballot

* This suggest an easy mapping of the Paxos state to the consensus
state



Problem 1: lack of history

* Unfortunately, Paxos acceptors only remember the latest value they
accepted

* So while there may exists a majority that have all accepted the value
at time t, that majority may no longer exist at time t+1
* Even though it is guaranteed that no other value will ever be chosen



Fix 1: add history variables

* We can add a “ghost variable” to each acceptor that remembers all
(value, ballot) pairs it has ever accepted

* “ghost” means that it does not actually have to be realized

* With this “history variable”, we can exhibit a state mapping



Problem 2: outrunning the specification

* A refinement mapping maps each step of the low-level specification
to either one step of the high-level specification or a stuttering step of
the high-level specification

* In Paxos, when f=1 and n=3, the following scenario is possible:

* Leader proposes a (value, ballot)

* Some acceptor accepts (value, ballot)

* |n that one step:
* The value is chosen
* The acceptor learns that the value is chosen (decided)

* However, our high-level consensus spec requires two steps:
* From undecided to chosen and from chosen to learned



Fix 2: two possibilities

* Change the high-level spec to include a “choose + learn” step
* i.e., speed up the high-level spec
* complicates the high-level specification
* changing the specification may not be allowed

* Add a ghost “prophecy variable” to the low-level specification
* slow down the low-level spec

e artificially insert a step between accepting and learning by changing the
prophecy variable

* does not change either the implementation or the high-level spec



Completeness

 If S1 implements S2 then, possibly by adding history and prophecy
variables, there exists a refinement mapping from S2 to S1 (under
certain reasonable assumptions)

See Martin Abadi and Leslie Lamport, “The Existence of Refinement
Mappings”



Writing Specs



Why specity?

* To avoid errors!
* writing a spec identifies corner cases

* allows automated checking
* model checking / verification

* To clarify communication between designers and builders
* which avoids errors too...



What to specity?

e Start with the most difficult pieces
* those pieces that are most likely to have errors in it

* Grain of atomicity
* Too coarse may fail to reveal important details
* Too fine may make the spec unwieldy



When to specity

* |deally before system is implemented
* find errors early!

* In reality, often implementation provides additional insights that may
require chances to the specification
* try to minimize this---changing the spec a lot wastes dollars and can even kill
entire projects

* In practice, not unusual to write spec after an implementation is
completed
* because specs make good documentation



General hints

» Keep it simple, stupid (KISS principle)

* spec must be clear

* Don’t be too abstract
* may overlook details that are important in a real system

 Write comments



