Concurrent Programming: Critical Sections

CS 6410

[Robbert van Renesse]
Concurrent Programming is Hard

Why?

- Concurrent programs are *non-deterministic*
 - run them twice with same input, get two different answers
 - or worse, one time it works and the second time it fails
- Program statements are executed *non-atomically*
 - \(x += 1 \) compiles to something like
 - \(\text{LOAD } x \)
 - \(\text{ADD } 1 \)
 - \(\text{STORE } x \)
Enter *Harmony*

- A new concurrent programming language
 - heavily based on Python syntax to reduce learning curve for many
- A new underlying virtual machine

it tries *all* possible executions of a program (or rather, explores all possible reachable states) until it finds a problem, if any
 (this is called “model checking”)

Non-Determinism

(a) [code/prog1.hny] Sequential

1. $shared = True$
2.
3. def f(): assert $shared$
4. def g(): $shared = False$
5.
6. f()
7. g()

(b) [code/prog2.hny] Concurrent

1. $shared = True$
2.
3. def f(): assert $shared$
4. def g(): $shared = False$
5.
6. spawn f()
7. spawn g()

Figure 3.1: A sequential and a concurrent program.
Non-Determinism

Figure 3.1: A sequential and a concurrent program.

(a) [code/prog1.hny] Sequential

```
1 shared = True
2
def f(): assert shared
def g(): shared = False
5
6 f()
7 g()
```

(b) [code/prog2.hny] Concurrent

```
1 shared = True
2
def f(): assert shared
def g(): shared = False
5
6 spawn f()
7 spawn g()
```

#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed
def thread(self):
 while True:
 ... # code outside critical section
 ... # code to enter the critical section
 ... # critical section itself
 ... # code to exit the critical section

spawn thread(1)
spawn thread(2)
...

• How do we check mutual exclusion?
• How do we check progress?
def thread(self):
 while True:
 … # code outside critical section
 … # code to enter the critical section
 @cs: assert atLabel(cs) == { (thread, self): 1 }
 … # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?
def thread(self):
 while choose({ False, True }):
 ... # code outside critical section
 ... # code to enter the critical section
 @cs: assert atLabel(cs) == { (thread, self): 1 }
 ... # code to exit the critical section

spawn thread(1)
spawn thread(2)
...

• How do we check mutual exclusion?
• How do we check progress?
 • if code to enter/exit the critical section cannot terminate, Harmony with balk
First attempt: a naïve lock

```python
lockTaken = False

def thread(self):
    while choose({False, True}):
        # Enter critical section
        await not lockTaken
        lockTaken = True

        # Critical section
        @cs: assert atLabel(cs) == {thread, self: 1}

        # Leave critical section
        lockTaken = False

spawn thread(0)
spawn thread(1)
```

Figure 5.3: [code/naiveLock.hny] Naïve implementation of a shared lock.
First attempt: a naïve lock

```
lockTaken = False

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        await not lockTaken
        lockTaken = True

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        lockTaken = False

spawn thread(0)
spawn thread(1)
```

Figure 5.3: [code/naiveLock.hny] Naïve implementation of a shared lock.
First attempt: a naïve lock

```python
lockTaken = False

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        await not lockTaken
        lockTaken = True

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        lockTaken = False

    spawn thread(0)
    spawn thread(1)
```

Figure 5.3: code/naiveLock.hny Naïve implementation of a shared lock.
First attempt: a naïve lock

```python
lockTaken = False

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        await not lockTaken
        lockTaken = True

    # Critical section
    @cs: assert atLabel(cs) == { (thread, self): 1 }

    # Leave critical section
    lockTaken = False

spawn thread()
spawn thread()
```

Figure 5.3: [code/naiveLock.hny] Naïve implementation of a shared lock.

==== Safety violation ====

thread/0 [1-2,3(choose True),4-7] 8 { lockTaken: False }
thread/1 [1-2,3(choose True),4-8] 9 { lockTaken: True }
thread/0 [8-19] 19 { lockTaken: True }

>>> Harmony Assertion (file=code/naiveLock.hny, line=10) failed
Second attempt: *flags*

```python
def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        await not flags[1 - self]

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 5.5: code/naiveFlags.hny Naïve use of flags to solve mutual exclusion.
Second attempt: `flags`

```python
flags = [False, False]

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        await not flags[1 - self]

        # Critical section
        @cs: assert atLabel(cs) == {thread, self): 1}

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.
Second attempt: *flags*

```python
flags = [False, False]

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        await not flags[1 - self]

        # Critical section
        @cs: assert atLabel(cs) == {thread, self}: 1

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.
Second attempt: *flags*

```python
def thread(self):
    flags = [False, False]

    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        await not flags[1 - self]

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.
Second attempt: flags

```python
flags = [False, False]

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        await not flags[1 - self]

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

spawn thread(0)
spawn thread(1)
```

Figure 5.5: [code/mutex/

Non-terminating State

46 { flags: [False, False] }
thread/0 [1-2,3(choose True),4-12] 13 { flags: [True, False] }
thread/1 [1-2,3(choose True),4-12] 13 { flags: [True, True] }
blocked thread: thread/1 pc = 13
blocked thread: thread/0 pc = 13
Third attempt: *turn* variable

```python
turn = 0

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        turn = 1 - self
        await turn == self

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section

        spawn thread(0)
        spawn thread(1)
```

Figure 5.7: code/naiveTurn.hny Naïve use of turn variable to solve mutual exclusion.
Third attempt: *turn* variable

```python
turn = 0

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        turn = 1 - self
        await turn == self

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        spawn thread(0)
        spawn thread(1)
```

Figure 5.7: [code/naiveTurn.hny](#) Naïve use of turn variable to solve mutual exclusion.
Third attempt: *turn* variable

```python
    turn = 0

    def thread(self):
        while choose({ False, True }):
            # Enter critical section
            turn = 1 - self
            await turn == self

            # Critical section
            @cs: assert atLabel(cs) == { (thread, self): 1 }

            # Leave critical section
            spawn thread(0)
            spawn thread(1)
```

Figure 5.7: [code/naiveTurn.hny] Naïve use of turn variable to solve mutual exclusion.
Third attempt: *turn* variable

```
    turn = 0

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        turn = 1 - self
        await turn == self

        # Critical section
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section

        spawn thread(0)
        spawn thread(1)
```

Figure 5.7: [code]___init__/() [0,28-38] 38 { turn: 0 }
thread/0 [1-2,3(choose True),4-26,2,3(choose True),4] 5 { turn: 1 }
thread/1 [1-2,3(choose False),4,27] 27 { turn: 1 }
blocked thread: thread/0 pc = 5
```python
sequential flags, turn
flags = [ False, False ]
turn = choose({0, 1})

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }  

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
Peterson’s Algorithm: *flags & turn*

```python
sequential flags, turn

flags = [False, False]
turn = choose({0, 1})

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == {thread, self: 1}

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
Peterson’s Algorithm: flags & turn

```
 sequential flags, turn

 flags = [ False, False ]
 turn = choose({0, 1})

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
Peterson's Algorithm: *flags & turn*

```python
def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == {(thread, self): 1}

        # Leave critical section
        flags[self] = False

        spawn thread(0)
        spawn thread(1)
```

"you go first"

wait until alone or it's my turn

Figure 6.1: code/Peterson.hny Peterson's Algorithm
Peterson’s Algorithm: flags & turn

```python
def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
Peterson’s Algorithm: flags & turn

```python
sequential flags, turn
flags = [ False, False ]
turn = choose({0, 1})

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

    spawn thread(0)
spawn thread(1)
```

#states = 104 diameter = 5
#components: 37
no issues found

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
So, we proved Peterson’s Algorithm correct by brute force, enumerating all possible executions. We now know *that* it works.

But how does one prove it by deduction? so one might understand why it works…
What and how?

• Need to show that, for any execution, all states reached satisfy mutual exclusion
 o in other words, mutual exclusion is invariant

\textit{invariant} = \textit{predicate that holds in every reachable state}
How to prove an invariant?

- Need to show that, for any execution, all states reached satisfy the invariant.

- Sounds similar to sorting:
 - Need to show that, for any list of numbers, the resulting list is ordered.

- Let’s try *proof by induction* on the length of an execution.
Proof by induction

You want to prove that some *Induction Hypothesis* $IH(n)$ holds for any n:

- **Base Case:**
 - show that $IH(0)$ holds

- **Induction Step:**
 - show that if $IH(i)$ holds, then so does $IH(i+1)$
Proof by induction in our case

To show that some IH holds for an execution E of any number of steps:

- **Base Case:**
 - show that IH holds in the initial state(s)

- **Induction Step:**
 - show that if IH holds in a state produced by E, then for any possible next step s, IH also holds in the state produced by $E + [s]$
But there’s a problem

• How do we characterize a “state produced by E”? o or how do we characterize a reachable state?
• Instead, it’s much easier if we proved a so-called “inductive invariant”:
 o Base Case:
 – show that IH holds in the initial state(s)
 o Induction Step:
 – show that if IH holds in any state, then for any possible next step, IH also holds in the resulting state
First question: what should IH be?

• Obvious answer: mutual exclusion itself
 o if T_0 is in the critical section, then T_1 is not
 – without loss of generality…
 o Formally: $T_0@cs \implies \neg T_1@cs$

• Unfortunately, this won’t work…
State before T1 takes a step:

```python
def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == {(thread, self): 1}

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

flags = [True, True]
turn = 1

mutual exclusion holds

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
State after T1 takes a step:

```python
sequential flags, turn

flags = [False, False]
turn = choose({0, 1})

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

spawn thread(0)
spawn thread(1)
```

flags = [True, True]
turn = 1

mutual exclusion violated

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
So, is Peterson’s Algorithm broken?
No, it’ll turn out this prior state cannot be reached from the initial state (see later)

```python
flags = [ True, True ]
turn = choose({0, 1})

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)
        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }
        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
Useful and obvious but insufficient invariant

```
sequential flags, turn

flags = [False, False]
turn = choose({0, 1})

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == {thread, self}: 1 }

        # Leave critical section
        flags[self] = False

spawn thread(0)
spawn thread(1)
```

$Tx@cs \Rightarrow flags[x]$
What else do we expect to hold @cs?

```python
sequential flags, turn
flags = [False, False]
turn = choose({0, 1})

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == {thread, self}: 1

        # Leave critical section
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

mutual exclusion holds

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
Another obvious IH to try

• Based on the **await** condition:
 \[T0@cs \implies \neg flags[1] \lor turn = 0 \]

• Promising because if \(T0@cs \land T1@cs \) then
 \[
 T0@cs \implies \neg flags[1] \lor turn = 0 \land
 T1@cs \implies \neg flags[0] \lor turn = 1 \implies \begin{cases} turn = 0 \land \text{turn} = 1 \
 \end{cases}
 \]
 \[\implies \text{False} \ (therefore \ mutual \ exclusion) \]

• Unfortunately, this is not an invariant…
Another obvious IH to try

- Based on the `await` condition:
 \[T0@cs \implies \neg flags[1] \lor turn = 0 \]

- Promising because if
 \[T0@cs \land T1@cs \]
 then
 \[!T0@cs \implies \neg flags[1] \lor turn = 0 \land T1@cs \implies \neg flags[0] \lor turn = 1 \]
 \[\implies \text{Min} \]

- Unfortunately, this is not an invariant…

Easy to check with Harmony
Just run it with the following:

```
@cs: assert (not flags[1 - self]) or (turn == self)
```
State before T1 takes a step:

```python
sequential flags, turn
flags = [ False, False ]
turn = choose({0, 1})

def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        T0@cs ⇒ ¬flags[1] ∨ turn = 0 holds
        flags[self] = False

    spawn thread(0)
    spawn thread(1)
```

flags = [True, False]
turn = 1

note: this is a reachable state

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
State after T1 takes a step:

```python
sequential flags, turn
flags = [ False, False ]
turn = choose({0, 1})
def thread(self):
    while choose({ False, True }):
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        T0@cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

spawn thread(0)
spawn thread(1)
```

flags = [True, True]
turn = 1

T0@cs ⇒ ¬flags[1] ∨ turn = 0 violated

note: this is also a reachable state

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm
But suggests an improved hypothesis

\[T_0@cs \implies \neg flags[1] \lor \text{turn} = 0 \lor T_1@gate \]

```python
flags = [False, False]
turn = choose({0, 1})

def thread(self):
    while choose({False, True}):
        # Enter critical section
        flags[self] = True
        @gate: turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # Critical section
        @cs: assert (not flags[1 - self]) or (turn == self) or
             (atLabel(gate) == {((thread, 1 - self): 1)})

        # Leave critical section
        flags[self] = False
```
But suggests an improved hypothesis

\[T0@cs \Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate \]

Also easy to check with Harmony

Proves that it is invariant, but not necessarily an inductive invariant

```rust
flags = [False, False]

@cs: assert (not flags[1 - self]) or (turn == self) or (atLabel(gate) == {((thread, 1 - self): 1)})

# Leave critical section
flags[self] = False
```
Let I be the induction hypothesis:

$$I \triangleq T0@cs \Rightarrow \neg flags[1] \lor turn == 0 \lor T1@gate$$

I clearly holds in the initial state because $\neg T0@cs$ (false implies anything)

We are going to show: if I holds in a state (reachable or not), then I also holds in any state after either $T0$ or $T1$ takes a step
Tricky Case 1:

¬\(T0@cs\) and \(T0\) takes a step so that \(T0@cs\)

This must mean that \(\neg flags[1] \lor turn = 0\)

before the step (see code line 11)

But then \(\neg flags[1] \lor turn = 0\) still holds after the step

So \(T0@cs \Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate\)
Tricky Case 2:

T0@cs and *T1* takes a step

This must mean that before the step

\[\neg \text{flags}[1] \lor \text{turn} = 0 \lor \text{T1@gate} \] (by IH).

So 3 cases to consider:

- \(\neg \text{flags}[1] \Rightarrow \text{flags}[1] \)
 - this means \(\text{T1@gate} \) after the step
- \(\text{turn} = 0 \Rightarrow \text{turn} = 1 \)
 - can’t happen (only \(T0 \) sets turn to 1)
- \(\text{T1@gate} \Rightarrow \neg \text{T1@gate} \)
 - this means turn = 0 after step

So

\[T0@cs \Rightarrow \neg \text{flags}[1] \lor \text{turn} = 0 \lor \text{T1@gate} \]
Finally, prove mutual exclusion

\[
T0@cs \land T1@cs \Rightarrow \\
\left\{
\begin{array}{l}
\neg flags[1] \lor turn = 0 \lor T1@gate \\
\neg flags[0] \lor turn = 1 \lor T0@gate
\end{array}
\right. \\
\Rightarrow turn = 0 \land turn = 1 \\
\Rightarrow False
\]
Finally, prove mutual exclusion

\[T0@cs \land T1@cs \implies \]
\[
\left\{ \neg flags[1] \lor turn = 0 \lor T1@gate \right\} \land \left\{ \neg flags[0] \lor turn = 1 \lor T0@gate \right\}
\implies turn = 0 \land turn = 1
\implies False
\]

QED
Now we can see why this state cannot be reached!

```python
sequential flags, turn
flags = [ False, False ]
turn = choose({0, 1})

def thread(self):
    while choose({False, True})�
        # Enter critical section
        flags[self] = True
        turn = 1 - self
        await (not flags[1 - self]) or (turn == self)

        # critical section is here
        @cs: assert atLabel(cs) == { (thread, self): 1 }

        # Leave critical section
        flags[self] = False

        spawn thread(0)
        spawn thread(1)
```

flags = [True, True]
turn = 1

$T0@cs \not\Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate \times$
Review in Pictures: State Space

Mutual Exclusion Holds

property = set of states
Mutual Exclusion Holds

Mutual Exclusion Violated

property = set of states
property = set of states

mutual exclusion is not inductive
Review in Pictures: State Space

Mutual Exclusion Holds

Reachable States

\[\text{property} = \text{set of states} \]

\[\text{subset} = \text{implication} \]

Mutual Exclusion Violated
property = set of states
Review in Pictures: State Space

Reachable States

Initial States → Final States

Inductive Invariant Holds

Mutual Exclusion Holds

Mutual Exclusion Violated

property = set of states
Swapping lines 9 and 10?

```python
    sequential flags, turn

    flags = [ False, False ]
    turn = choose({0, 1})

    def thread(self):
        while choose({ False, True }):
            # Enter critical section
            flags[self] = True
            turn = 1 - self
            await (not flags[1 - self]) or (turn == self)

            # critical section is here
            @cs: assert atLabel(cs) == { (thread, self): 1 }

            # Leave critical section
            flags[self] = False

        spawn thread(0)
        spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm