

CS 6410 Fall 2017

Eric Campbell and Rolph Recto

(OpenFlow, originally)

10 BREAKTHROUGH TECHNOLOGIES

2009

NEWS // WEB

TR10: Software-Defined Networking

Nick McKeown believes that remotely controlling network hardware with software can bring the Internet up to speed.

4 comments

KATE GREENE

Tuesday, February 24, 2009

"Stanford computer scientist Nick McKeown and colleagues developed a standard called OpenFlow that essentially opens up the Internet to researchers, allowing them to define data flows using software-a sort of 'software-defined networking.' Installing a small piece of OpenFlow firmware (software embedded in hardware) gives engineers access to flow tables, rules that tell switches and routers how to direct network traffic."

(5	0	0	g	

software defined | software defined radio

software defined storage for dummies

software defined storage solutions

software defined architecture software defined definition

software defined networking
software defined storage
software defined data center
software defined everything
software defined anything

control plane

routing

isolation

traffic engineering

data plane

packet forwarding

packet scheduling

traditional networking

SDN

(programmable)

Active Networks

Separating the Data and Control Planes

OpenFlow

SDN Today

use pulls

technology pushes

network ossification

desire for unified middlebox interface

lower compute costs

use pulls

technology pushes

advances in programming languages

DARPA Active Networks

programmable switches

srcIP count 10.0.0.1 1

srcIP	count		
10.0.0.1	1		
10.0.0.2	1		

capsules

packet contains instructions to push switch info at every hop

Tiny Packet Programs
Jeyakumar et al, 2014

In-Band Network Telemetry Kim et al, 2016

switch ID	egress time
3	1510765745
2	1510765743

whither active networks?

whither active networks?

performance and security concerns

no "killer app"

no practical deployment plan

"The misconception that packets would necessarily carry Java code written by end users made it possible to dismiss active network research as too far removed from real networks and inherently unsafe."

"The Road to SDN," Feamster et al 2014

whither active networks?

performance and security concerns

no "killer app"

no practical deployment plan

"The misconception that packets would necessarily carry Java code written by end users made it possible to dismiss active network research as too far removed from real networks and inherently unsafe."

"The Road to SDN," Feamster et al 2014

Active Networks

Separating the Data and Control Planes

OpenFlow

SDN Today

use pulls

technology pushes

burgeoning network speeds

insufficient network reliability

specialized services (VPNs)

use pulls

technology pushes

open interface between control and data planes

logically centralized control

Open Shortest Path First (OSPF)

OSPF

OSPF

OSPF

SoftRouter

SoftRouter

SoftRouter

Shortest Path Routing

whither SoftRouter (and others)?

vendors didn't adopt ForCES (and others)

not general enough

no practical deployment plan

Active Networks

Separating the Data and Control Planes

OpenFlow

SDN Today

OpenFlow: enabling innovation in campus networks

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner

SIGCOMM 2008

Nick McKeown Stanford

Jennifer Rexford
Princeton

Scott Shenker Berkeley

Nick McKeown Stanford

Jennifer Rexford
Princeton

Scott Shenker Berkeley

Martín Casado Stanford

use pulls

technology pushes

networking research

market factors

datacenter networks

use pulls

technology pushes

backwards compatible

general packet processing (more fields to match on)

flow table

fields	counter	action
srclp=10.0.0.*, ipProto=TCP	10	pt = 2
dstPort=80	0	drop

firewall 2

Active Networks

Separating the Data and Control Planes

OpenFlow/SDN

SDN Today

NetKAT

Forwarding Policy (F)

```
if sw==A then
    (if pt==1 then pt=2 elif pt==2 then pt=1)
elif sw==B then
    (if pt==1 then p=2 elif pt=2 then pt=1)
else drop
Network Behavior
run(F;T)
```

Topology (T)

```
if sw==A and pt==2 then (sw=B; pt=1)
elif sw==B and pt==1 then (sw=A; pt=2)
else drop
```


NetKAT

Forwarding Policy (F)

```
if sw==A then
    (if pt==1 then pt=2 elif pt==2 then pt=1)
elif sw==B then
    (if pt==1 then p=2 elif pt=2 then pt=1)
else drop
```

Topology (T)

```
if sw==A and pt==2 then (sw=B; pt=1)
elif sw==B and pt==1 then (sw=A; pt=2)
else drop
```

Intuition: These are functions from packets to sets of packets

Network Behavior run(F;T)

SSH packets sent from **H1** get to **H2**

Invariant true when **P1** is equivalent to **P2**.

P1

```
if typ==SSH and @h1
then run(F;T);
eventually(@h2)
```

P2

if typ==SSH and @h1
then run(F;T)

let @h1 be sw==A and pt==1
let @h2 be sw==B and pt==2

SSH packets sent from **H1** get to **H2**

Invariant true when **P1** is equivalent to **P2**.

if typ==SSH and @h1
then run(F;T);
eventually(@h2)

P2 if typ==SSH and @h1
then run(F;T)

SSH packets from **H1**

SSH packets sent from **H1** get to **H2**

Invariant true when **P1** is equivalent to **P2**.

if typ==SSH and @h1
P1 then run(F;T);
eventually(@h2)

P2 if typ==SSH and @h1 then run(F;T)

"run" the network

SSH packets sent from **H1** get to **H2**

Invariant true when **P1** is equivalent to **P2**.

if typ==SSH and @h1
then run(F;T);
eventually(@h2)

P2
if typ==SSH and @h1
then run(F;T)

packets received by **H2**

NetKAT

```
if sw == A then:
    if port == 1 then port := 2
    elif port == 2 then port := 3
    else drop

elif sw == B then:
    if port==1 drop
    else port := 1

elif sw == C
    if port == 1 then port := 3
    elif port == 3 then port := 2
    elif port == 2 drop;
```


NetKAT

```
if sw == A then:
    if port == 2 then alert_ctrl
    else port := 3

if sw == B then:
    if port == 1 then drop
    elif port == 2 then port := 3
    elif port == 3 then port := 2

if sw == C
    if port == 1 then alert_ctrl
    elif port == 2 then port := 1
    elif port == 3 then port := 2
```


whither SDN?

Home > VolP

Why VMware is spending \$1B-plus to buy Nicira

VMware makes strong software-defined networking play by purchasing Nicira

whither SDN?

Silicon Valley Makes a Rare Bet on Silicon

By lan King

September 13, 2017, 5:00 AM EDT Corrected September 15, 2017, 2:22 PM EDT

- Barefoot Networks emerges as leading startup chipmaker
- → Company has big backers in Goldman Sachs, Google, Alibaba

questions?

thanks!