DISTRIBUTED SYSTEMS: ORDERING AND CONSISTENT CUTS

by Maofan (Ted) Yin
my428@cornell.edu
Time, Clocks, and the Ordering of Events in a Distributed System

- The original author of LaTeX
- Sequential consistency
- Atomic register hierarchy
- Lamport’s bakery algorithm
- Byzantine fault tolerance
- Paxos
- Lamport signature

Leslie B. Lamport (1941–)
Time, Clocks and the Ordering of Events

Leslie B. Lamport (1941–)

- B.S. in mathematics from MIT
- M.A. and Ph.D. in mathematics from Brandeis University
- Dijkstra Prize (2000, because of this paper, and 2005)
- ACM A.M. Turing Award (2013)
- ACM Fellow (2014)
“Jim Gray once told me that he had heard two different opinions of this paper: that it’s trivial and that it’s brilliant. I can’t argue with the former, and I am disinclined to argue with the latter.”

Leslie B. Lamport (1941–)
“This is my most often cited paper. Many computer scientists claim to have read it. But I have rarely encountered anyone who was aware that the paper said anything about state machines … People have insisted that there is nothing about state machines in the paper. I’ve even had to go back and reread it to convince myself that I really did remember what I had written.”
“The only reason of time is so that everything does not happen at once.”

— Albert Einstein

- Why time is so important? Air ticket reservation, online shopping, etc.
“The only reason of time is so that everything does not happen at once.”

— Albert Einstein

- Systems: an interesting definition of “distributed”: msg. transmission delay is NOT negligible compared to the time between events in a single process.

- Sometimes impossible to say any one of two occurred first: partial ordering.
“The only reason of time is so that everything does not happen at once.”

— Albert Einstein

- “Everything does not happen at once” means ordering.
- An ordering can give a happened-before relation of events in the system.
- Clocks can map events to numbers, so as to give the relation.
Clocks
In this paper, two clock implementations are introduced

- **Logical clocks:**
 - works without the help of any physical equipment,
 - causes anomaly with external happened-before relation (the clock is confined within the system).

- **Physical clocks:**
 - works when physical clocks have certain precision,
 - but provides with strong relation.
We have

- A priori: total ordering of events in the same process
- Msgs. can carry time info

We want to achieve

- A relation $a \rightarrow b$ that
 1. $a, b \in$ same process, a comes before $b \implies a \rightarrow b$,
 2. a sends a msg. to $b \implies a \rightarrow b$,
 3. $a \rightarrow b \land b \rightarrow c \implies a \rightarrow c$.

Remarks:

- a and b are concurrent if $a \not\rightarrow b \land b \not\rightarrow a$.
- $a \not\rightarrow a$ (irreflexivity),
- $a \rightarrow b \land b \rightarrow c \implies a \rightarrow c$ (transitivity),
- $a \rightarrow b \implies b \not\rightarrow a$ (asymmetry).
Logical Clocks: Space-Time Diagram

Past 1965
sending and receiving msgs. are also events,

happened-before relation can be deduced by checking whether there is a directed path from a to b.
Let the clock be $C\langle e \rangle$, where e stands for an event.

$C\langle e \rangle := C_i\langle e \rangle$, e is an event of process i.

To satisfy "→" relation, we want $\forall a, b$

$$a \rightarrow b \implies C\langle a \rangle < C\langle b \rangle \quad \text{(clock cond.)}$$

not vice versa: $a \rightarrow b \iff C\langle a \rangle < C\langle b \rangle$

otherwise,

$$e \leftrightarrow e' \land e' \leftrightarrow e \implies C\langle e \rangle \not< C\langle e' \rangle \land C\langle e \rangle \not> C\langle e' \rangle$$

$$\implies C\langle e \rangle = C\langle e' \rangle$$
Logical Clocks: Design

- Clock condition is held if
 - C1: \(a, b \in \text{proc. } i: a \text{ is before } b \implies C_i(a) < C_i(b)\).
 - C2: \(i\) sends msg. as event \(a\) to \(j\) as event \(b\): \(C_i(a) < C_j(b)\).

- Therefore, we can impose the following implementation rules
 - IR1: proc. \(i\) increases \(C_i\) between any two successive events.
 - IR2:
 - when \(i\) sends msg. \(m\) as an event \(a\): \(m\) contains a timestamp \(T_m = C_i(a)\).
 - when \(j\) receives as an event \(b\), it sets \(C_j := \max\{C_j, T_m + 1\}\).
Extend the minimum partial ordering obtained above to one possible total ordering.

Trick: use process identity ordering to give order to all concurrent relation.

Example: define \(a \triangleright b \) ("\(\Rightarrow \)" in the paper)

\[C_i \langle a \rangle < C_j \langle b \rangle, \]
\[C_i \langle a \rangle = C_j \langle b \rangle \land P_i < P_j. \]

"\(\prec \)" fairness: \(C_i \langle a \rangle = C_j \langle b \rangle \land j < i \Rightarrow a \triangleright b \) if \(j < C_i \langle a \rangle \) mod \(N \leq i. \)
A unified protocol for each of processes

Compete to acquire the lock & no pre-coordination

1. mutex lock semantics (safety),
2. ordered requests,
3. eventual release of every processes \(\implies\) every request will be granted. (liveness)
The ordering constraint makes the design non-trival! Imagine a plausible solution using a central scheduling process P_0

- P_1 sends a request to P_0,
- P_1 sends a msg. to P_2,
- P_2 sends a request to P_0.

P_1 should be granted because of the causal order.
The solution makes use of logical clocks to reorder the requests

- assume FIFO and reliable channels
- each process has a local queue that can buffer the reorder the requests
Logical Clocks: Case Study

- **Request:** P_i sends "$T_m: P_i$ requests the resource" to every other proc. and puts onto its local queue.

- **Receive (req.):** on receiving "$T_m: P_i$ req. the res.", P_j puts it into local queue and send ACK to P_i (not needed if it has sent a msg. to P_i with higher T'_m).

- **Release:** P_i removes any corresponding request msgs. from local queue and sends "$T_m: P_i$ releases the res." to others.

- **Receive (rel.):** on receiving "$T_m: P_i$ release the res.", P_j removes any corresponding request msgs. from P_i.

- **When granted:** (TBC).
When granted

- T_m: P_i req. res.” in queue and **ordered first** (by “\triangleright” relation),
- P_i received a msg. from every other procs. later than T_m (all others know about the request).
Request or release the resource \(\implies\) operations on a global state.

State machine:
- states: \(s \in S\),
- commands: \(c \in C\),
- events that cause state transition: \(e : C \times S \rightarrow S, e(c, s) = s'\).

In the previous case: \(C = \{P_i \text{ requests}\} \cup \{P_i \text{ releases}\}\)

Each process has a local running instance of the state machine.

The order of executing commands is consistent.

State machine replication without fault tolerance.
How to address the issue?

- Give the user the responsibility for avoiding anomalous behavior (to express the external causality with manual timestamp).

- Introduce stronger clock condition:
 - Let “→” denote the happened-before relation for the set of all systems events (including “external” events).
 - ∀a, b : a→b \implies C(a) < C(b).
Physical Clocks

- $C_i(t)$ is differentiable function of t except for isolated jump discontinuities where the clock is reset.

- True physical clock: $dC_i(t)/dt \approx 1$.

![Graph showing $C_i(t)$ as a function of t with a reset point.](image)
Physical Clocks

- PC1: \(\exists \) constant \(\kappa \ll 1 : \forall i, |dC_i(t)/dt - 1| < \kappa \). (physical property of a specific clock \(C_i \))
- PC2: \(\forall i, j : |C_i(t) - C_j(t)| < \epsilon \). (guaranteed by a carefully chosen protocol)
Let μ be a number: $\forall i, j, a \rightarrow b \implies$

- $a \in \text{process } i$,
- $b \in \text{process } j$,
- a occurs at t,
- b occurs later than $t + \mu$.

μ is less than the shortest transmission time for interprocess messaging.

To avoid anomalous behavior: $\forall i, j, t : C_i(t + \mu) - C_j(t) > 0$.
Physical Clocks

- To avoid anomalous behavior: $\forall i, j, t : C_i(t + \mu) - C_j(t) > 0$.
- Resetting clocks: clocks are always reset forward. (why?)
- If PC1 and PC2 are guaranteed
 - From PC1, we have for same process i:
 $$C_i(t + \mu) - C_i(t) > (1 - \kappa)\mu.$$
 - Combining with PC2, we have:
 $$\epsilon \leq \mu(1 - \kappa) \implies \mu \geq \frac{\epsilon}{1 - \kappa}$$
Combining with PC2, we have:

\[\epsilon \leq \mu(1 - \kappa) \implies \mu \geq \frac{\epsilon}{1 - \kappa} \]

- How to guarantee PC2?
- What \(\epsilon \) can we get when ensuring PC2?
Physical Clocks

- Define total delay: $v_m = t' - t$.
- Minimum delay: $\mu_m \geq 0 : \mu_m \leq v_m$.
- Define unpredicatable delay: $\xi_m = v_m - \mu_m$.

Physical Clocks

- IR1': \(\forall i, P_i \) does not receive msg. at \(t \) \(\implies \) \(C_i \) is differentiable at \(t \) and \(\frac{dC_i(t)}{dt} > 0 \) (> 0 is trivial because clocks never go backward).

- IR2':
 - \(P_i \) sends msg. at \(t \) that contains \(T_m = C_i(t) \),
 - Upon receiving \(m \) at \(t' \), \(P_j \) sets \(C_j(t') \) equal to
 \[
 \max \left\{ \lim_{\delta \to 0} C_j(t' - |\delta|), T_m + \mu_m \right\}
 \]
Theorem (proof is in Appendix A of the paper):

$$\epsilon \approx d \cdot (2\kappa \tau + \xi) \quad \forall t \geq t_0 + \tau d \quad (\text{assuming } \mu + \xi \ll \tau)$$

- d: the diameter of the communication graph among the processes.
- τ: at least 1 msg. sent between $(t, t + \tau)$.
- Recall: given

$$\mu \geq \frac{\epsilon}{1 - \kappa}$$

then the anomalous behavior cannot happen.
Distributed Snapshots

- Distributed Snapshots: Determining Global States of Distributed Systems

- Dining philosophers problem.
- Chandy-Lamport algorithm.
- Three books and over a hundred papers on distributed computing, verification of concurrent programs, parallel programming languages and performance models of computing & communication systems.

K. Mani Chandy (1944–)
Distributed Snapshots

K. Mani Chandy (1944–)

- B.Tech. from Indian Institute of Technology.
- M.S. from Polytechnic Institute of Brooklyn.
- Ph.D. in Electrical Engineering from MIT.
- Simon Ramo Professor of Computer Science at Caltech.
- Member of National Academy of Engineering.
Distributed Snapshots

K. Mani Chandy (1944–)

- Worked for Honeywell and IBM.
- Was in CS department of UT Austin, serving as chair in 1978–79 and 1983–85.
- Story of the Chandy-Lamport algorithm according to Lamport’s website.
Assumption: a process can
- record its own state and the msgs. it sends and receives,
- nothing else!

A process \(p \) must enlist the cooperation of other procs. that must record their local states and send the recorded states to \(p \).

What makes a “snapshot”: a global state is a set of
- process states
- channel states: the buffered messages
How to make snapshot: analogy to taking a panorama photo.
Taking snapshots: How?

- How to make snapshot: analogy to taking a panorama photo.
- Different moments in different pieces, but together make a reasonable photo.
- Define “making sense” for distributed snapshots?
Taking snapshots: Why?

- Detect stable property of a predicate y in the system D.
- Stable: $y(S) \rightarrow y(S')$, $\forall S'$ of D reachable from S.
- y is true $\implies y$ is always true.
Model

- Processes.
- Channels with
 - infinite buffer,
 - no error,
 - FIFO.
- Delay is arbitrary but finite.
- Events are
 - Atomic
 - \(e = \langle p, s, s', M, c \rangle \)
- Global state \(S \) consist of
 - Process states: \(s_1, s_2, \ldots \)
 - Channel states: a sequence of msgs. \(M_1, M_2, \ldots \)
Model: Example

\[
\begin{array}{c}
\text{p} \quad\xrightarrow{c} \quad\text{q} \\
\text{q} \quad\xleftarrow{c'} \quad\text{p}
\end{array}
\]

\[
\begin{array}{c}
\text{s0} \quad\xrightarrow{\text{send token}} \quad\text{s1} \\
\text{s1} \quad\xleftarrow{\text{receive token}} \quad\text{s0}
\end{array}
\]

\[
\begin{array}{c}
\text{s0} \quad\xrightarrow{\text{empty}} \quad\text{s0} \\
\text{s0} \quad\xrightarrow{\text{token}} \quad\text{s0}
\end{array}
\]

\[
\begin{array}{c}
\text{s0} \quad\xrightarrow{\text{empty}} \quad\text{s0} \\
\text{s0} \quad\xrightarrow{\text{empty}} \quad\text{s0}
\end{array}
\]

\[
\begin{array}{c}
\text{s0} \quad\xrightarrow{\text{empty}} \quad\text{s1} \\
\text{s1} \quad\xleftarrow{\text{empty}} \quad\text{s0}
\end{array}
\]
Motivation: see 3.1 of the paper.

Some processes spontaneously start to record their states.

For each process \(p \): sends one marker along \(c \) (the channel directed away from \(p \)) after recoding its state and before it sends further msgs.

For each process \(q \) receiving a marker from channel \(c \)

- if \(q \) has not recorded its state
 - \(q \) records its state,
 - \(q \) records the state of \(c \) as empty;
- otherwise, \(q \) records the state of \(c \) as the sequence of msgs. received along \(c \)
 - after \(q \)’s state was recoreded,
 - before \(q \) received the marker along \(c \).
○ Termination?

○ Has the recorded global state ever happened in the system?
Algorithm: Discuss

- Has the recorded global state ever happened in the system? (Not always)
- Locally “consistent” ≠ globally “consistent”.
Algorithm: Discuss

Diagram of state transitions and actions.

States:
- s0: receive token
- s1: send token

Actions:
- empty
- token

Transitions:
- p to q: c, c'
- s0 to s1: receive token
- s1 to s0: send token
○ Define “happened”?
Algorithm: Properties and Proof

Let seq = (e_i, 0 ≤ i) be a distributed computation.

S_{i-1} \xrightarrow{e_{i-1}} S_i.

Initiated in S_ι, terminated in S_φ.

Show that for the captured snapshot S^*
 ◦ S^* is reachable from S_ι,
 ◦ S_φ is reachable from S^*.
Show that for the captured snapshot S^*
- S^* is reachable from S_ℓ,
- S_ϕ is reachable from S^*.

$\exists seq'$
- seq' is a permutation of seq,
- $S_\ell = S^*$ or S_ℓ occurs earlier than S^*,
- $S_\phi = S^*$ or S^* occurs earlier than S_ϕ.
○ Define e_i is
 ○ “prerecording” (pre.) iff. e_i is in proc. p and p records its state after e_i (somewhere) in seq.
 ○ “postrecording” (post.) o.w.

○ If not ALL pre. preceds post. $\exists j$
 \[\underbrace{\ldots, e_{j-1}, e_j, \ldots}_{\text{post. \ pre.}} \]
 ○ then $\ldots, e_j, e_{j-1}, \ldots$ is also a computation.
Algorithm: Proof

- If not ALL pre. precedes post. \(\exists j \)
 - \(\ldots, e_{j-1}, e_j, \ldots \)
 - then \(\ldots, e_j, e_{j-1}, \ldots \) is also a computation.

- \(e_{j-1} \) and \(e_j \) must be on different procs. (because \(e_{j-1} \) is post., \(j - 1 < j \)).

- Assume \(e_{j-1} \) occurs at \(p \), \(e_j \) occurs at \(q \), and \(p \neq q \).

- There CANNOT be a msg. sent at \(e_{j-1} \) and received at \(e_j \)
 - a msg. sent along \(c \) when \(e_{j-1} \) occurs \(\implies \) a marker must have been sent long \(c \) before \(e_{j-1} \) (by definition of post. events).
 - a msg. received along \(c \) when \(e_j \) occurs \(\implies \) a marker must have been received long \(c \) before \(e_j \) (FIFO) \(\implies e_j \) is post. too (on receiving a marker, a process records its state). Contradiction!
Algorithm: Proof

- Assume e_{j-1} occurs at p, e_j occurs at q, and $p \neq q$.
- There CANNOT be a msg. sent at e_{j-1} and received at e_j. (proved, channel state is unchanged)
- State of q is not altered by the occurrence of e_{j-1}: because of different procs.
 - If e_j at q receives M along c, then M must have been the msg. at the head of c before $e_{j-1} \implies e_j$ can occur in S_{j-1}.
- State of p is not altered by the occurrence of e_j
 - e_j happens after p and at a different process $\implies e_{j-1}$ can occur after e_j.
Therefore

- \(\ldots, e_{j-2}, e_j, e_{j-1}, \ldots \) is a valid computation,
- the global state after \(e_1, \ldots, e_{j-2}, e_j, e_{j-1} \) is the same as \(e_1, \ldots, e_{j-2}, e_{j-1}, e_j \).

With the invariants held, such swapping can be done repetitively, until

- all pre. events precede post. events,
- seq is a computation,
- \(\forall i, i < \iota \text{ or } i \geq \phi : e'_i = e_i \), and
- \(\forall i, i \leq \iota \text{ or } i \geq \phi : S'_i = S_i \).
With the invariants held, such swapping can be done repetitively, until

- all pre. events precede post. events,
- seq is a computation,
- $\forall i, i < \iota$ or $i \geq \phi : e'_i = e_i$, and
- $\forall i, i \leq \iota$ or $i \geq \phi : S'_i = S_i$.

Finally, we need to show the state \tilde{S} in the middle (after all pre. before all post.) is S^* (recorded snapshot).

Equivalently

- the state of $\forall p$ is the same,
- the state of $\forall c$ is the same.
Equivalently

- the state of \(\forall p \) is the same,
 - by noticing the state of a process can only be changed by events,
 - all posts. events are after the state \(\bar{S} \);
- the state of \(\forall c \) is the same:

 \[
 (\text{msgs. of pre. send of } c) - (\text{msgs. of pre. receive of } c) = \text{msgs. taken in the snapshot of } c
 \]

- msgs. of pre. send of \(c \) =
 - (i) msgs. sent by \(p \) before sending a marker,
- msgs. of pre. receive of \(c \) =
 - (ii) msgs. received by \(q \) before recording,
- (i) \(-\) (ii) = msgs. in the snapshot.
Distributed Snapshot: Stability Detection

- **Input:** a stable property \(y \)
- **Output:** A boolean value definite with the property
 - \(y(S_t) \rightarrow \text{definite} \)
 - \(\text{definite} \rightarrow y(S_\phi) \)

- **Implementation**
 - record a global state \(S^* \),
 - definite := \(y(S^*) \).

- **Correctness**
 - \(S^* \) is reachable from \(S_t \),
 - \(S_\phi \) is reachable from \(S^* \), and
 - \(y(S) \rightarrow y(S') \) \(\forall S' \) reachable from \(S \) (definition of a stable property).
Thank you!

Q & A