CS 6410: ADVANCED SYSTEMS
TODAY’S LECTURE: ROBBERT VAN RENESSE
NORMAL PROF: HAKIM WEATHERSPOON

Fall 2016
A PhD-oriented course about research in systems
About me (Robbert)...

Goals for Today

- What is CS6410 “about”?
 - What will be covered, and what background is assumed?
 - Why take this course?
 - How does this class operate?
 - Class details

- Non-goal: We won’t have a real lecture today
 - This is because our lectures are always tied to readings
Coverage

- The course is about the cutting edge in computer systems – the topics that people at conferences like ACM Symposium on Operating Systems Principles (SOSP) and the Usenix Conference on Operating Systems Design and Implementation (OSDI) love.

- We look at a mix of topics:
 - Classic insights and classic systems that taught us a great deal or that distilled key findings into usable platform technologies.
 - Fundamental (applied theory) side of these questions.
 - New topics that have people excited right now.
Lots of work required

- First and foremost: Attend every class, participate
 - You’ll need to do a lot of reading.
 - You’ll write a short (1 paragraph) summary of the papers each time
 - Whoever presents the paper that day grades these (\(\sqrt{-}, \sqrt{1}, \sqrt{+}\))
 - You can skip up to 4 of them, whenever you like. Hand in “I’m skipping this one” and the grader will record that. But not more than 4.

- You’ll have two “miniprojects” during first six weeks
 - Build a parallel version TCP proxy: Initially single threaded, then multi-threaded and/or event based
 - Distributed coordination service running on EC2 (use a preexisting version of Paxos, and access it via Elastic Beanstalk). Study to identify bottlenecks, but no need to change the version of Paxos we provide

- Then will do a more substantial semester-long independent project
- Students need to present a paper. Required
You could probably take one other class too.

But if you have any desire to have any kind of life at all, plus to begin to explore a research area, you can’t take more than two classes like this!

Not so much that it is “hard” (by and large, systems isn’t about hard ideas so much as challenging engineering), but it definitely takes time.
Systems: Three “arcs” over 40 years

- In the early days it was all one area
- Today, these lines are more and more separated
- Some people get emotional over which is best!

Build/evaluate a research prototype
- Prove stuff about something
- Report on amazing industry successes

Advantage: Think with your hands. Elegant abstractions emerge as you go
Risk: Works well, but can’t explain exactly how

Advantage: Really clear, rigorous statements and proofs
Risk: Cool theory but impractical result that can’t be deployed. Sometimes model is unrealistic!

Advantage: At massive scale your intuition breaks down. Just doing it is a major undertaking!
Risk: Totally unprincipled spaghetti
Supercloud Discussion

How to read and evaluate a systems research paper
Back to CS6410 stuff

Pinning down the plan
Why take this course

- Learn about systems abstractions, principles, and artifacts that have had lasting value,
- Understand attributes of systems research that is likely to have impact,
- Become comfortable navigating the literature in this field,
- Learn to present papers in a classroom setting
- Gain experience in thinking critically and analytically about systems research, and
- Acquire the background needed to work on research problems currently under study at Cornell and elsewhere.
Who is the course “for”?

- Most of our CS6410 students are either
 - PhD students (but many are from non-CS fields, such as ECE, CAM, IS, etc)
 - Two year MS students who might switch into PhD
 - Undergraduates seriously considering a PhD

- Fall 2016: Too big to allow MEng students.
 - MEng program offers lots of other options;
 - CS6410 has a unique role for the core CS PhD group
A paper on the Supercloud might just brag about how great it is, how well it scales, etc.

Reality is often complex and reflects complex tensions and decisions that force compromises.

In CS6410 our goal is to be honest about systems: see what the authors had to say, but think outside of the box they were in when they wrote the papers.
Details

- Instructor: Hakim Weatherspoon
 - hweather@cs.cornell.edu
 - Office Location: 427 Gates

- TA: Zhiming Shen

- Lectures:
 - CS 6410: Tu, Th: 10:10 – 11:25 PM, 114 Gates
Course Help

- Course staff, office hours, announcements, etc:

- Please look at the course syllabus: the list of papers is central to the whole concept of this class

- Research project ideas are also listed there
CS 6410: Overview

- Prerequisite:
 - Mastery of CS3410, CS 4410 material
 - Fundamentals of computer architecture and OS design
 - How parts of the OS are structured
 - What algorithms are commonly used
 - What are the mechanisms and policies used
 - Some insights into storage systems, database systems “helpful”
 - Some exposure to networks, web, basic security ideas like public keys
CS 6410: Topics:

- Operating Systems
 - Core concepts, multicore, virtualization, uses of VMs, other kinds of “containment”, fighting worms/viruses.

- Cloud-scale stuff
 - Storage systems for big data, Internet trends, OpenFlow

- Foundational theory
 - Models of distributed computing, state machine replication and atomicity, Byzantine Agreement.
 - Impact of social networks, P2P models, Self-Stabilization

- A few lectures will focus on new trends: RDMA, BitCoin (a distributed protocol!), etc
CS 6410: Readings

- Required reading for each lecture: 2 or 3 papers
 - Reflecting contrasting approaches, competition, criticism,…
 - Papers pulled from, best journals and conferences
 - TOCS, SOSP, OSDI, …
 - 26 lectures, 54 (required) papers + 50 or so “recommended”!

- Read papers before each class and bring notes
 - takes ~2 to 4 hrs per paper, write notes and questions

- Write a review and turn in at least one hour before class
 - Turn on online via Course Management System (CMS)
 - No late reviews will be accepted, but you can skip 4 of them
 - Graded by the person doing that lecture on a simple √-, √, √+ basis plus written comments.
Mini-Projects

- New, early part of semester

- Two of them
 - Hands on experience with multicore parallelism in C or C++
 - Hands on experience with cloud computing on EC2
CS 6410: Two small projects

- Goal: Get the rust off your systems skills!

- Mini-project one: Build a multi-threaded, multicore version of a TCP proxy, in C or C++. Make it really, really fast.

- Mini-project two: Take a standard Paxos and run it on Amazon’s EC2 using Elastic Beanstalk. Identify bottlenecks (we aren’t asking you to fix them)
Each student is required to prepare notes on each paper before class and to bring them to class for use in discussion.

Your notes should list assumptions, innovative contributions and criticisms.
- Every paper in the reading list has at least one major weakness.
- Don’t channel the authors: your job is to see the bigger questions!

Turn paper reviews in online before class via CMS
- Be succinct—One paragraph per paper
 - Short summary of paper (two or three sentences)
 - Two to three strengths/contributions
 - and at least one weaknesses
- One paragraph to compare/contrast papers
- In all, turn in two to three paragraphs
CS 6410: Paper Presentations

- Ideally, each person will present a paper, depending on the stable class size
 - Read and understand both required and suggested papers
 - Learning to present a paper is a big part of the job!
 - The presenting person also grades the essays for that topic
- Two and a half weeks ahead of time
 - Meet with professor to agree on ideas to focus on
- One and a half weeks ahead of time
 - Have presentation prepared and show slides or “chalk talk” to professor
- One week ahead of time
 - Final review / do a number of dry-runs
CS 6410: Class Format

- 45-50 minutes presentation,
- 30 minutes discussion/brainstorming.
 - In that order, or mixed.
- All students are required to participate!
- Counts in final grading.
One research project per person
- Can work individually or in pairs
- Further, often can turn research agenda in separate research area into a systems project

Initial proposal of project topic – due mid-September
Survey of area (related works) – due begin of October

Midterm draft paper – due begin of November
Peer reviews – due a week later

Final demo/presentation – due begin of December
Final project report – due a week later
CS 6410: Project Suggestions

- Supercloud related projects
- New cloud-scale computing services, perhaps focused on applications such as the smart power grid, smart self-driving cars, internet of things, smart homes
- Operating system features to better leverage RDMA
- Software defined network infrastructure on the systems or network side (as distinct from Nate’s focus on the PL side)
- Study the security and distributed systems properties of BitCoin
- New systems concepts aimed at better supporting “self aware” applications in cloud computing settings (or even in other settings)
- Building better memory-mapped file systems: current model has become outmoded and awkward
- Tools for improving development of super fast multicore applications like the one in mini-project one.
- … and you can invent more of your own!
Important Project Deadlines

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/9</td>
<td>Submit your topic of interest proposal</td>
</tr>
<tr>
<td>9/23</td>
<td>Submit 2-3 pages survey on topic</td>
</tr>
<tr>
<td>(Oct)</td>
<td>Discuss project topic with Zhiming/Hakim</td>
</tr>
<tr>
<td>11/4</td>
<td>Midterm draft paper of project</td>
</tr>
<tr>
<td>12/2</td>
<td>Final demo/presentation of project</td>
</tr>
<tr>
<td>12/10</td>
<td>Final paper on project</td>
</tr>
</tbody>
</table>
CS 6410: Grading

- **Class Participation ~ 40%**
 - lead presentation, reading papers, write reviews, participation in class discussion

- **Projects ~ 50%**
 - Probably 10% will be the two mini-projects, 40% the big term one
 - Proposal, survey, draft, peer review, final demo/paper

- **Subjective ~ 10%**

- **This is a rough guide**
Academic Integrity

- Submitted work should be your own

- Acceptable collaboration:
 - Clarify problem, C syntax doubts, debugging strategy
 - You may use any idea from any other person or group in the class or out, provided you clearly state what you have borrowed and from whom.
 - If you do not provide a citation (i.e. you turn other people’s work in as your own) that is cheating.

- Dishonesty has no place in any community
 - May NOT be in possession of someone else’s homework/project
 - May NOT copy code from another group
 - May NOT copy, collaborate or share homework/assignments
 - University Academic Integrity rules are the general guidelines

- Penalty can be as severe as an ‘F’ in CS 6410
Stress, Health and Wellness

- Need to pace yourself to manage stress
 - Need regular sleep, eating, and exercising

- Don’t miss class... but....

- Do not come to class sick (with the flu)!
 - Email me ahead of time that you are not feeling well
 - People not usually sick more than once in a semester
Before Next time

- Rank-order 2 papers to present (first and second half)
- Read first papers below and write review
 http://portal.acm.org/citation.cfm?id=357402
 http://portal.acm.org/citation.cfm?id=806614
- Miniproject0
 - Using Amazon’s EC2/S3 infrastructure
- Check website for updated schedule