DISTRIBUTED HASH TABLES

Soumya Basu
November 5, 2015
CS 6410
OVERVIEW

• Why DHTs?
• Chord
• Dynamo
PEER TO PEER

• What guarantees does IP provide?
• What features do you get?
• What happens if you want more?
 • Overlay networks!
CHORD PROTOCOL

• Intended as another building block

• Supports one operation:

 • Mapping keys to nodes
FEATURES OF CHORD

• Scalability
• Provable correctness and performance
 • $O(\log(N))$ lookups
• Simplicity
HOW CHORD WORKS

Finger Table for a node
HOW CHORD WORKS

How routing works
UNFAIR LOADS
LOAD BALANCING
FAULT TOLERANCE
IMPACT

• Distributed Hash Tables were a hot topic!
 • Chord: 12193* citations
 • Pastry: 9606* citations
 • CAN: 9010* citations

*According to Google Scholar
DISCUSSION

• Why was this so impactful?

• What limitations are there to Chord? Is it easy to overcome? Why/why not?
DYNAMO

- Another distributed hash table
- Similar structure to Chord
 - Ring
 - Only supports `get()` and `put()`
- Follows the CAP theorem (no strong consistency)
STRICT PERFORMANCE

- Service level agreements in 99.9th percentile
 - Availability
 - Latency
- Explicitly don’t care about averages!
FAULT TOLERANCE

• Nodes fail all the time

• Keys can’t be lost

• Solution: replicate keys for next N successors
REPLICATION

• Sloppy quorum
 • Each nodes maintains a “preference list” of replicas

• Requests are made on first N healthy nodes
 • Need R nodes to respond for read
 • Need W nodes to respond for write
REPLICATION

• Sloppy quorum
 • Developers can tune R, N and W
• Hinted handoff
 • If node is down, periodically check for recovery
 • Include “hint” declaring original replica for key
CONSISTENCY

• Replication leads to consistency problems

• Most systems resolve conflicts on writes

• Amazon needs high write throughput
 • e.g. adding to a cart

• Gives up on consistent reads: “eventual consistency”
HANDLING CONFLICTS

D1 ([Sx, 1])

write
handled by Sx

D2 ([Sx, 2])

write
handled by Sx

D3 ([Sx, 2], [Sy, 1])

write
handled by Sy

D4 ([Sx, 2], [Sz, 1])

write
handled by Sz

reconciled
and written by
Sx

D5 ([Sx, 3], [Sy, 1][Sz, 1])
PERFORMANCE

(hourly plot of latencies during our peak seson in Dec. 2006)