VMMS: DISCO AND XEN

Edouard Bugnion, Scott Devine, and Mendel
Rosenblum

Virtualization

“a technique for hiding the physical characteristics of
computing resources from the way in which other
systems, applications, or end users interact with those
resources. This includes making a single physical
resource appear to function as multiple logical
resources; or it can include making multiple physical
resources appear as a single logical resource”

Old idea from the 1960s

IBM VM/370 — AVMM for IBM mainframe

Multiple OS environments on expensive hardware
Desirable when few machine around

Popular research idea in 1960s and 1970s

Entire conferences on virtual machine monitors
Hardware/VVMM/OS designed together

Interest died out in the 1980s and 1990s

Hardware got more cheaper
Operating systems got more powerful (e.g. multi-user)

A Return to Virtual Machines

Disco: Stanford research project (SOSP °97)
Run commodity OSes on scalable multiprocessors
Focus on high-end: NUMA, MIPS, IRIX

Commercial virtual machines for x86 architecture
VMware Workstation (now EMC) (1999-)
Connectix VirtualPC (now Microsoft)

Research virtual machines for x86 architecture
Xen (SOSP ’03)
plex86

OS-level virtualization
FreeBSD Jails, User-mode-linux, UMLInux

Overview

Virtual Machine

A fully protected and isolated copy of the underlying
physical machine’s hardware. (definition by IBM)”

Virtual Machine Monitor

A thin layer of software that's between the hardware and
the Operating system, virtualizing and managing all
hardware resources.

Also known as “Hypervisor”

Classification of Virtual Machines

guest guest guest
application application application

guest

application application application

guest

guest

guest operating sysem

guest operaing sysem

virmal-machine monitor (VIR

virtual-machine monitor (V)

host operatng system

host hardware

host hardware

Type I VMM

Figure 1: Virimal-machine structures. A virtnal-machine monitor is a software layer that runs on a hest platform and provides
an abstraction of 2 complete computer svstem to higher-level software. The host platform may be the bare hardware (Type I
VMM ot a host operating system (Type T VMM). The software mnning above the virnal-machine abstraction is called guest

software (opefating svstem and applications .

Type I VMM

Classification of Virtual Machines

Type |
VMM is implemented directly on the physical hardware.

VMM performs the scheduling and allocation of the system’s
resources.

IBM VM /370, Disco, VMware’s ESX Server, Xen

Type i
VMMs are built completely on top of a host OS.

The host OS provides resource allocation and standard execution
environment to each “guest OS.”

User-mode Linux (UML), UMLinux

Disco: Challenges

Overheads

Additional Execution
Virtualization 1/O

Memory management for multiple VMs

Resource Management

Lack of information to make good policy decisions

Communication & Sharing

Interface to share memory between multiple VMs

Baseed on slides from 2011fa: Ashik R

Disco: Interface

O | | Lol

Scientific App

oS SMP-0S OS 0OS Thin OS
DA i, g A - L
2R R By el
PE PE PE PE . PE PE PE PE
| | | i | |
w/\l—_/- Interconnect
ccNUMA Multiprocessor

 Processors — Virtual CPU

* Memory

* |/O Devices

Disco: Virtual CPUs

-1 Direct Execution on the real CPU
1 Intercept Privileged Instructions

01 Different Modes:
- Kernel Mode: Disco
- Supervisor Mode: Virtual Machines

. . : : Normal
User Mode: Applications Computatio

Disco: Memory Virtualization

Adds a level of address translation
Uses Software reloaded TLB and pmap
Flushes TLB on VCPU Switch

Uses second level Software TLB

Node 11

Virtual Pages

Physical Pages

Machine Pages

L I N —————

Disco: Memory Management

Affinity Scheduling
Page Migration
Page Replication

memmap

Physical Memory of VM 1 ~ Physical Memory of VM 2

Buffer Cache) | Buffer Cache

Data Code Buffer Cache Data

Machine Memory

Disco: | /O Virtualization

Virtualizes access to | /O devices and intercepts all device
access

Adds device drivers in to OS
Special support for Disk and Network access

Copy-on-write
Virtual Subnet

Allows memory sharing between VMs agnostic of each other
NFS Server NFS Client

Buffer Cache

Virtual Pages

Physical Pages

\T/ Mac}line Pages

Running Commodity OSes

Changes for MIPS Architecture

Required to relocate the unmapped segment

Device Drivers
Added device drivers for |/O devices.

Changes to the HAL

Inserted some monitor calls in the OS

Experimental Results

* Uses Sim OS Simulator for Evaluations

Normalized Execution Time

Normalized Execution Time

IRIX Disco IRIX Disco IRIX Disco IRIX Disco

Pmake Engineering Raytrace Database

Fig. 6. Overhead of virtualization

160 +—

Idle

T - Disco

Sync

- Kernel

User_stall
User

IRIX 1VM 2VM 4VM

8VM 8VM/nfs IRIX SplashOS

pmake RADIX

Fig. 8. Workload scalability under Disco

Footprint size (MB)

Normalized Execution Time

80

70

60

50

40

30

20

100

g0

60

40

20

Fig.

- Disco

Buffer_Cache

Bl Rix_Text

IRIX_Data

- Disco

remote
local
exec

81
L 77 . -
r 36 £ = -
33
L 27 27 i) 4
23 23 I I
v M vV M v M Y v M vV M
IRIX 1VM 2VMs 4VMs 8VMs 8VMs+NFS
Pig. 7. Data sharing in Disco between virtual machines
| 100 100 i
67
62
48 49
L [— i
[
16% 78% 100% 6% 76% 100%
IRIX Disco UMA IRIX Disco UMA
Engineering Raytrace

9. Performance henefits of page migration and replication

Disco: Takeaways

Develop system s/w with less effort

Low /Modest overhead

Simple solution for Scalable Hardware

Subsequent history
Rewritten into VMWoare, became a major product

Performance hit a subject of much debate but successful
even so, and of course evolved greatly

Today a huge player in cloud market

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris,

Alex Ho, Rolf Neugebauery, lan Pratt, Andrew Wareld

Xen’s Virtualization Goals

N I —
11 Isolation
1 Support different Operating Systems

1 Performance overhead should be small

Reasons to Virtualize

Systems hosting multiple applications on a shared
machine

undergo the following problems:
Do not support adequate isolation

Affect of Memory Demand, Network Traffic,
Scheduling Priority and Disk Access on process’s
performance

System Administration becomes Difficult

XEN : Introduction

A Para-Virtualized Interface

Can host Multiple and different Operating Systems

Supports Isolation
Performance Overhead is minimum

Can Host up to 100 Virtual Machines

XEN : Approach

Drawbacks of Full Virtualization with respect to x86 architecture
Support for virtualization not inherent in x86 architecture
Certain privileged instructions did not trap to the VMM
Virtualizing the MMU efficiently was difficult

Other than x86 architecture deficiencies, it is sometimes required to view
the real and virtual resources from the guest OS point of view

Xen’s Answer to the Full Virtualization problem:

It presents a virtual machine abstraction that is similar but not identical
to the underlying hardware -para-virtualization

Requires Modifications to the Guest Operating System
No changes are required to the Application Binary Interface (ABI)

Terminology Used

Guest Operating System (OS) — refers to one of the
operating systems that can be hosted by XEN.

Domain — refers to a virtual machine within which a
Guest OS runs and also an application or
applications.

Hypervisor — XEN (VMM) itself.

XEN'’s Virtual Machine Interface
-

o The virtual machine interface can be broadly
0 classified into 3 parts. They are:

1 Memory Management
1 CPU
1 Device 1/O

XEN’s VMI : Memory Management

Problems
x86 architecture uses a hardware managed TLB

Segmentation

Solutions

One way would be to have a tagged TLB, which is currently supported by some
RISC architectures

Guest OS are held responsible for allocating and managing the hardware page
tables but under the control of Hypervisor

XEN should exist (64 MB) on top of every address space

Benefits
Safety and Isolation
Performance Overhead is minimized

XEN’s VMI : CPU

Problems

Inserting the Hypervisor below the Guest OS means that the Hypervisor will be the most
privileged entity in the whole setup

If the Hypervisor is the most privileged entity then the Guest OS has to be modified to
execute in a lower privilege level

Exceptions

Solutions
x86 supports 4 distinct privilege levels — rings
Ring O is the most and Ring 3 is the least
Allowing the guest OS to execute in ring 1- provides a way to catch the
privileged instructions of the guest OS at the Hypervisor

Exceptions such as memory faults and software traps are solved by registering the
handlers with the Hypervisor

Guest OS must register a fast handler for system calls with the Hypervisor
Each guest OS will have their own timer interface

XEN’s VMI: Device | /O

Existing hardware Devices are not emulated

A simple set of device abstractions are used — to
ensure protection and isolation

Data is transferred to and fro using shared memory,
asynchronous buffer descriptor rings — performance
is better

Hardware interrupts are notified via a event
delivery mechanism to the respective domains

XEN : Cost of Porting Guest OS

Linux is completely portable
on the Hypervisor - the OS is
called XenolLinux

Windows XP is in the Process

Lot of modifications are 0S subsection & ines

. y Limux Xr
required to the XP’s e T 1
architecture Independent code Xenspeciic monaen 1363 3321
— lots of structures and unions (Portion of fofal x86 code hase 1.36% .04%)
Cll‘e Used for PTE’S Tahle 2: The simplicity of porting commodity 0Ses to Xen. The

cost metric is the number of lines of reasonably comme nied and
formatted code which are modified or added compared with the

LOT Of mOdifiCCﬂ'ionS 1'0 fhe original x86 code base (excluding device drivers).

architecture specific code was
done in both the OSes

In comparing both OSes —
Larger Porting effort for XP

1 Xen exercises just basic control

operations such as access
control, CPU scheduling
between domains etc.

o1 All the policy and control

decisions with respect to Xen
are undertaken by
management software running
on one of the domains —
domainO

The software supports creation
and deletion of VBD, VIF,
domains, routing rules etc.

XEN : Control and Management

Usar User Usar
Software Software Software

GuestOs GuestOS GuestOS
(Xenolinux) XenoBSO) {(XenaXP)

Kano-d ware Xeno-Aware Xenp-Aware
Device Drivers Davice Drivers Device Drivers

Keno-A ware
Device Drivers

Domaind
] wirtual wirtial

interface

Figure 1: The structure of a machine running the Xen hyper-
visor, hosting a number of different guest operating systems,
including Domaind running control software in a XenoLinux
enyvironment.

wirtural wirtiesl g
xG& CPU phy mem network Wockdew N

XEN : Detailed Design

Control Transfer

Hypercalls — Synchronous calls made from domain to XEN

Events — Events are used by Xen to notify the domain in an
asynchronous manner

Data Transfer

Transfer is done using 1/O rings
Memory for device | /O is provided by the respective domain

Minimize the amount of work to demultiplex data to a specific
domain

XEN : Data Transfer in Detail
-

o 1/O Ring Structure

o 1/O Ring is a circular queue of

d escCri pTO rs rgi.-‘u.-_-_-.f Consumer Reguest Producer
. R Privale poider Shared painter
= Descriptors do not contain |/O data Xsa 4 updied by guest 08

but indirectly reference a data
buffer as allocated by the guest OS.

Respnge Producer

11 Access to each ring is based on a set Sdpoinir 7 G / ‘ | Respone Comme
of pointers namely producer and Xen el Vgl v
consumer pOinTerS [mequest quewe - Deseriptons quened by the VA ol not yet sceepted by Xen

. . [O tstanding deseriptors - Deseripior shids awaiting a response fom Xen

O Gues‘l' OS associates Un|que [Response quewss - Descripion returned by Xen in response o serviced requests
identifier with each request, which is [tnset deseiptors
replica’red b)’ the response to Figure 2: The structure of asynchronous 'O rings, which are
address the possible problem of used for data transfer between Xen and guest OSes,

ordering between requests

XEN : Sub System Virtualization

The various Sub Systems are :
CPU Scheduling

Time and Timers

Virtual Address Translation
Physical Memory

Network Management

Disk Management

XEN : CPU Scheduling

Xen uses Borrowed Virtual Time scheduling
algorithm for scheduling the domains

Per domain scheduling parameters can be adjusted
using domainO

Advantages

Work — Conserving

Low — Latency Dispatch by using virtual time warping

XEN : Time and Timers

Guest OSes are provided information about real time,
virtual time and wall clock time

Real Time — Time since machine boot and is accurately
maintained with respect to the processor’s cycle counter
and is expressed in nanoseconds

Virtual Time — This time is increased only when the
domain is executing — to ensure correct time slicing
between application processes on its domain

Wall clock Time — an offset that can be added to the
current real time.

XEN : Virtual Address Translation

Register guest OSes page tables directly with the MMU
Restrict Guest OSes to Read only access
Page table Updates should be validated through the hypervisor to ensure safety

Each page frame has two properties associated with it namely type and reference
count

Each page frame at any point in time will have just one of the 5 mutually exclusive

types:
Page directory (PD), page table (PT), local descriptor table (LDT), global descriptor table
(GDT), or writable (RW).

A page frame is allocated to page table use after validation and it is pinned to PD
or PT type.

A frame can’t be re-tasked until reference=0 and it is unpinned.
To minimize overhead of the above operations in a batch process.

The OS fault handler takes care of frequently checking for updates to the shadow
page table to ensure correctness.

XEN : Physical Memory

Physical Memory Reservations or allocations are made
at the time of creation which are statically partitioned,
to provide strong isolation.

A domain can claim additional pages from the
hypervisor but the amount is limited to a reservation
limit.

Xen does not guarantee to allocate contiguous regions
of memory, guest OSes will create the illusion of
contiguous physical memory.

Xen supports efficient hardware to physical address
mapping through a shared translation array, readable
by all domains — updates to this are validated by Xen.

XEN : Network Management

Xen provides the abstraction of a virtual firewall router
(VFR), where each domain has one or more Virtual
network interface (VIF) logically attached to this VFR.

The VIF contains two 1/O rings of buffer descriptors,
one for transmitting and the other for receiving

Each direction has a list of associated rules of the form
(<pattern>,<action>) — if the pattern matches then the
associated action applied.

DomainO is responsible for implementing the rules over
the different domains.

To ensure fairness in transmitting packet they implement
round-robin packet scheduler.

XEN : Disk Management

Only DomainO has direct unchecked access to the
physical disks.

Other Domains access the physical disks through virtual
block devices (VBDs) which is maintained by domainO.

VBS comprises a list of associated ownership and access
control information, and is accessed via |/O ring.

A translation table is maintained for each VBD by the
hypervisor, the entries in the VBD’s are controlled by
domainO.

Xen services batches of requests from competing
domains in a simple round-robin fashion.

XEN : Building a New Domain

Building initial guest OS structures for new domains
is done by domainO.

Advantages are reduced hypervisor complexity
and improved robustness.

The building process can be extended and
specialized to cope with new guest OSes.

XEN : EVALUATION

Different types of evaluations:
Relative Performance.
Operating system benchmarks.
Concurrent Virtual Machines.
Performance Isolation.

Scalability

XEN : Experimental Setup

Dell 2650 dual processor 2.4GHz Xeon server with 2GB
RAM

A Broadcom Tigon 3 Gigabit Ethernet NIC.
A single Hitachi DK32EJ 146GB 10k RPM SCSI disk.

Linux Version 2.4.21 was used throughout, compiled for
architecture for native and VMware guest OS experiments—

i686
Xeno-i686 architecture for Xen.
Architecture um for UML (user mode Linux)

The products to be compared are native Linux (L), Xenolinux
(X), VMware Workstation 3.2 (V) and User Mode Linux (U)

XEN : Relative Performance

Complex application-level benchmarks that exercise the whole system have
been employed to characterize performance.

First suite contains a series of long-running computationally-intensive
applications to measure the performance of system’s processor, memory
system and compiler quality.

Almost all execution are all in user-space, all VMMs exhibit low overhead.

Second, the total elapsed time taken to build a default configuration of the
Linux 2.4.21 kernel on a local ext3 file system with gcc 2.96

Xen — 3% overhead, others more significant slowdown.

Third and fourth, experiments performed using PostgreSQL 7.1.3 database,
exercised by the Open Source Database Benchmark Suite (OSDB) for multi-
user Information Retrieval (IR) and On-Line Transaction Processing (OLTP)
workloads

PostgreSQL places considerable load on the operating system which leads to
substantial virtualization overheads on VMware and UML.

XEN : Relative Performance

Fifth, dbench program is a file system benchmark
derived from ‘NetBench’

Throughput experienced by a single client performing
around 90,000 file system operations.

Sixth, a complex application-level benchmark for
evaluating web servers and the file systems
30% are dynamic content generation, 16% are HTTP POST

operations and 0.5% execute a CGl script. There is up to
180Mb /s of TCP traffic and disk activity on 2GB dataset.

XEN fares well with 1% performance of native Linux,
VMware and UML less than a third of the number of clients
of the native Linux system.

XEN : Relative Performance
=

| 554
55

1.0

0.8

0.8

0.7

0.6

0.5

0.4

Relative score to Linux

0.3

0.2

0.1

0.0
L X v U L X v U L X v U L X v u L X v u L X v u

SPEC INT2000 (scora) Linw: buikd tima (s) QSDB-IR (tups) OSDE-OLTP (tup/s) dbanch (scora) SPEC WEBD9 (scom)

Figure 3: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

XEN : Operating System Benchmarks

Config

null null - openslet sig sig fork exec sh
call 110 stat closeTCP inst indl proc proc proc

L-SMA
LUP
Xen

VMW

UML

053081210 351232 0.83 2.94 143 601 4K2
045050 1.281.92 570 0.68 2.43 110 530 4k0
046050122 1,88 5.69 0.69 1.75 198 768 4kd

0.730.83 1.86 2.99 11.11.02 4.63 874 23 10K
247 251361626399 26.0 46.0 21k 33k 56k

Table 3 Imbench: Processes - times in s

o oM W & 8 16p 16
Corfig ok 16K 64K 16K ek 16K odK

L-SMH 1.69 1.88 203 2.36 268 4.79 384
LUP | 077 091 1.06 103 243 3.61 376

Xen | 1.97 2.22 267 307 287 7.08 394
VMW | 181 17.6 21.3 224 516 417 722

UML | 155 14.6 144 163 368 236 52.0

Table 4: Imbench: Confext switching times in s

XEN : Operating System Benchmarks

Table 5, mmap latency and page

fault latency. Config| OKFile 10KFile Mmap Prot Page
. .. . create delete create delete lat fault fault

Despl’re two transitions into Xen L-SMPF| 449 242 123 452 990 1.33 1.88
per page, the overhead is L-UP | 321 608 660 125 680 106 1.42

Xen 325 586 6B68B2 136 139 140 2.73
VMW | 353 93 856 214 620 753 124
UML | 130 657 250 113 1k4 218 263

relatively modest.

Table 6, TCP performance over
Gig(]b“' E’rherne'r LAN. Table 5: 1lmbench: File & VM system latencies in s

Socket size of 128kb

Results are median of @
experiments transferring 400MB

TCP MTU 1500 TCP MTU 500
Default Ethernet MTU of 1500 TX RX TX RX
bytes and dial-up MTU of 500- Linux) 897 897 602 544
bvte Xen | 897 (-0%) 897 (-0%) 516 (-14%) 467 (-14%)

yre. VMW| 291 (-68%) 615 (-319%) 101 (-83%) 137 (-75%)
Xenolinux’s page-flipping UML| 185 (-82°%) 203 (-779%) 61.1(-00%) Of.4(-83%)
technique achieves very low Table 6: ttcp: Bandwidth in Mb/s

overhead.

XEN : Concurrent Virtual Machines
-

71 In Figure 4,Xen’s interrupt
load balancer identifies the i
idle CPU and diverts all
interrupt processing to it, and
also the number of domains
increases, Xen’s performance
improves.

Figure 4: SPEC WEBY9 for 1, 2, 4, § and 16 concurrent Apache
servers: higher values are better.

71 In Figure 5, Increase in number

of domains further causes S P
reduction in throughput which I =Y
can be attributed to increased i g
context switching and disk %

head movement. i

2
0SDE-OLTP
Simultansous OSDE-IR and OSDE-OLTP Instancas on Xen
Figure 5: Performance of multiple instances of PostgreSQL

running OSDB in separate Xen domains. 8(diff) bars show per-
formance variation with different scheduler weights.

XEN : Scalability

They examine Xentoscc® 77 ° '
T]
The minimum physical me 20 5B
° ° . e —t +
with Xenolinux is 64MB. 3 18 T T T T T
20kB of state per doma E |8 N O N O O
' I I I I I I I I I
I I I I I I I I I
Figure 6, performance ¢ & y ! T O
between large number ¢ & b
2 12— Lin —+— -
I I I
. \ i i i XenoLinux [5ms time slice) —+—

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Concument Processes Domains

Figure 6: Normalized aggregate performance of a subset of
SPEC CINT2000 running concurrently on 1-128 domains

Debate

What should a VMM actually “do”2

Hand: Argues that Xen is the most elegant solution and
that the key is to efficiently share resources while
avoiding “trust inversions”

Disco: Premise is that guest O/S can’t easily be
changed and hence must be transparently ported

Heiser: For him, key is that smaller kernel can be
verified more completely (leads to L4... then SEL4)

Tornado, Barrelfish: Focus on multicore leads to
radically new architectures. How does this impact
virtualization debate?

