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Virtualization 
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 “a technique for hiding the physical characteristics of 

computing resources from the way in which other 

systems, applications, or end users interact with those 

resources. This includes making a single physical 

resource appear to function as multiple logical 

resources; or it can include making multiple physical 

resources appear as a single logical resource”  
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Old idea from the 1960s 

 IBM VM/370 – A VMM for IBM mainframe 
 Multiple OS environments on expensive hardware 

 Desirable when few machine around 

 Popular research idea in 1960s and 1970s 
 Entire conferences on virtual machine monitors 

 Hardware/VMM/OS designed together 

 Interest died out in the 1980s and 1990s 
 Hardware got more cheaper 

 Operating systems got more powerful (e.g. multi-user)  
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A Return to Virtual Machines 

 Disco: Stanford research project (SOSP ’97) 

 Run commodity OSes on scalable multiprocessors 

 Focus on high-end: NUMA, MIPS, IRIX 

  Commercial virtual machines for x86 architecture 

  VMware Workstation (now EMC) (1999-) 

  Connectix VirtualPC (now Microsoft) 

  Research virtual machines for x86 architecture 

  Xen (SOSP ’03) 

  plex86 

  OS-level virtualization 

  FreeBSD Jails, User-mode-linux, UMLinux 
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Overview 

 Virtual Machine 

 A fully protected and isolated copy of the underlying 

physical machine’s hardware. (definition by IBM)” 

 Virtual Machine Monitor 

 A thin layer of software that's between the hardware and 

the Operating system, virtualizing and managing all 

hardware resources. 

 Also known as “Hypervisor”  

   

 



7 

Classification of Virtual Machines 
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Classification of Virtual Machines 

 Type I 

 VMM is implemented directly on the physical hardware. 

  VMM performs the scheduling and allocation of the         system’s 

resources. 

  IBM VM/370, Disco, VMware’s ESX Server, Xen 

 Type II 

 VMMs are built completely on top of a host OS. 

  The host OS provides resource allocation and standard execution 

environment to each “guest OS.” 

  User-mode Linux (UML), UMLinux 

 



Disco: Challenges 

 Overheads 

• Additional Execution 

• Virtualization I/O 

• Memory management for multiple VMs 

 Resource Management 

• Lack of information to make good policy decisions 

 Communication & Sharing 

• Interface to share memory between multiple VMs 

Baseed on slides from 2011fa: Ashik R 



Disco: Interface 

• Processors – Virtual CPU 

• Memory 

• I/O Devices 



Disco: Virtual CPUs 

 Direct Execution on the real CPU 

 Intercept Privileged Instructions 

 Different Modes: 

• Kernel Mode: Disco 

• Supervisor Mode: Virtual Machines 

• User Mode: Applications 
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Disco: Memory Virtualization 

 Adds a level of address translation 

 Uses Software reloaded TLB and pmap 

 Flushes TLB on VCPU Switch 

 Uses second level Software TLB 

 



Disco: Memory Management 

 Affinity Scheduling 

 Page Migration 

 Page Replication 

 memmap 

 



Disco: I/O Virtualization 

 Virtualizes access to I/O devices and intercepts all device 
access 

 Adds device drivers in to OS 

 Special support for Disk and Network access 

 Copy-on-write 

 Virtual Subnet 

 Allows memory sharing between VMs agnostic of each other 

 



Running Commodity OSes 

 Changes for MIPS Architecture 

• Required to relocate the unmapped segment 

 Device Drivers 

• Added device drivers for I/O devices.  

 Changes to the HAL 

• Inserted some monitor calls in the OS 

 



Experimental Results 

• Uses Sim OS Simulator for Evaluations 



Disco: Takeaways 

 Develop system s/w with less effort 

 Low/Modest overhead 

 Simple solution for Scalable Hardware 

 

 Subsequent history 

 Rewritten into VMWare, became a major product 

 Performance hit a subject of much debate but successful 

even so, and of course evolved greatly 

 Today a huge player in cloud market 
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Xen’s Virtualization Goals 

 Isolation 

 Support different Operating Systems 

 Performance overhead should be small 

   



Reasons to Virtualize 

 Systems hosting multiple applications on a shared 

machine 

 undergo the following problems: 

 Do not support adequate isolation 

 Affect of  Memory Demand, Network Traffic, 

Scheduling Priority and  Disk Access on process’s 

performance 

 System Administration becomes Difficult 



XEN : Introduction 

 A Para-Virtualized Interface 

 Can host Multiple and different Operating Systems 

 Supports Isolation 

 Performance Overhead is minimum 

 Can Host up to 100 Virtual Machines 

 



XEN : Approach  

 Drawbacks of Full Virtualization with respect to x86 architecture 

 Support for virtualization not inherent in x86 architecture 

 Certain privileged instructions did not trap to the VMM  

 Virtualizing the MMU efficiently was difficult 

 Other than x86 architecture deficiencies, it is sometimes required to view 
the real and virtual resources from the guest OS point of view  

 

 Xen’s Answer to the Full Virtualization problem: 

 It presents a virtual machine abstraction that is similar but not identical 
to the underlying hardware -para-virtualization 

 Requires Modifications to the Guest Operating System  

 No changes are required to the Application Binary Interface (ABI) 

 



Terminology Used  

 Guest Operating System (OS) – refers to one of the 

operating systems that can be hosted by XEN. 

 Domain – refers to a virtual machine within which a 

Guest OS runs and also an application or 

applications. 

 Hypervisor – XEN (VMM) itself. 



XEN’s Virtual Machine Interface  

 The virtual machine interface can be broadly  

 classified into 3 parts. They are: 

 Memory Management 

 CPU 

 Device I/O 



XEN’s VMI : Memory Management 

 Problems  

 x86 architecture uses a hardware managed TLB  

 Segmentation 

 

 Solutions 

 One way would be to have a tagged TLB, which is currently supported by some 
RISC architectures 

 Guest OS are held responsible for allocating and managing the hardware page 
tables but under the control of Hypervisor 

 XEN should exist (64 MB) on top of every address space 

 

 Benefits 

 Safety and Isolation 

 Performance Overhead is minimized 

 

 

 



XEN’s VMI : CPU 

 Problems 

 Inserting the Hypervisor below the Guest OS means that the Hypervisor will be the most 
privileged entity in the whole setup 

 If the Hypervisor is the most privileged entity then the Guest OS has to be modified to 
execute in a lower privilege level 

 Exceptions 

 

 Solutions  

 x86 supports 4 distinct privilege levels – rings 

 Ring 0 is the most and Ring 3 is the least  

 Allowing the guest OS to execute in ring 1- provides a way to catch the 

 privileged instructions of the guest OS at the Hypervisor 

 Exceptions such as memory faults and software traps are solved by registering the 
handlers with the Hypervisor 

 Guest OS must register a fast handler for system calls with the Hypervisor 

 Each guest OS will have their own timer interface 

 

 



XEN’s VMI: Device I/O 

 Existing hardware Devices are not emulated 

 A simple set of device abstractions are used – to 

ensure protection and isolation 

 Data is transferred to and fro using shared memory, 

asynchronous buffer descriptor rings – performance 

is better 

 Hardware interrupts are notified via a event 

delivery mechanism to the respective domains 



XEN : Cost of Porting Guest OS 

 Linux is completely portable 
on the Hypervisor -  the OS is 
called XenoLinux 

 Windows XP is in the Process  

 Lot of modifications are 
required to the XP’s 
architecture Independent code 
– lots of structures and unions 
are used for PTE’s  

 Lot of modifications to the 
architecture specific code was 
done in both the OSes 

 In comparing both OSes – 
Larger Porting effort for XP 

 



XEN : Control and Management 

 Xen exercises just basic control 
operations such as access 
control, CPU scheduling 
between domains etc. 

 All the policy and control 
decisions with respect to Xen 
are undertaken by 
management software running 
on one of the domains – 
domain0 

 The software supports creation 
and deletion of VBD, VIF, 
domains, routing rules etc. 

 



XEN : Detailed Design 

 Control Transfer 

 

 Hypercalls – Synchronous calls made from domain to XEN 

 Events – Events are used by Xen to notify the domain in an 
asynchronous manner 

 

 Data Transfer 

 

 Transfer is done using I/O rings 

 Memory for device I/O is provided by the respective domain 

 Minimize the amount of work to demultiplex data to a specific 
domain 

 

 

 



XEN : Data Transfer in Detail 

 I/O Ring Structure 

 

 I/O Ring is a circular queue of 
descriptors  

 Descriptors do not contain I/O data 
but indirectly reference a data 
buffer as allocated by the guest OS. 

 Access to each ring is based on a set 
of pointers namely producer and 
consumer pointers 

 Guest OS associates a unique 
identifier with each request, which is 
replicated by the response to 
address the possible problem of 
ordering between requests 

 

 



XEN : Sub System Virtualization 

 The various Sub Systems are : 

 CPU Scheduling 

 Time and Timers 

 Virtual Address Translation 

 Physical Memory 

 Network Management 

 Disk Management 

 



XEN : CPU Scheduling 

 Xen uses Borrowed Virtual Time scheduling 

     algorithm for scheduling the domains 

 Per domain scheduling parameters can be adjusted 

using domain0 

 

 Advantages 

 

 Work – Conserving 

 Low – Latency Dispatch by using virtual time warping  



XEN : Time and Timers 

 Guest OSes are provided information about real time, 

virtual time and wall clock time 

 Real Time – Time since machine boot and is accurately 

maintained with respect to the processor’s cycle counter 

and is expressed in nanoseconds 

 Virtual Time – This time is increased only when the 

domain is executing – to ensure correct time slicing 

between application processes on its domain 

 Wall clock Time – an offset that can be added to the 

current real time. 



XEN : Virtual Address Translation 

 Register guest OSes page tables directly with the MMU  

 Restrict Guest OSes to Read only access  

 Page table Updates should be validated through the hypervisor to ensure safety 

 Each page frame has two properties associated with it namely type and reference 
count 

 Each page frame at any point in time will have just one of the 5 mutually exclusive 
types:  

 Page directory (PD), page table (PT), local descriptor table  (LDT), global descriptor table 
(GDT), or writable (RW). 

 A page frame is allocated to page table use after validation and it is pinned to PD 
or PT type. 

 A frame can’t be re-tasked until reference=0 and it is unpinned. 

 To minimize overhead of the above operations in a batch process. 

 The OS fault handler takes care of frequently checking for updates to the shadow 
page table to ensure correctness. 



XEN : Physical Memory 

 Physical Memory Reservations or allocations are made 
at the time of creation which are statically partitioned, 
to provide strong isolation. 

 A domain can claim additional pages from the 
hypervisor but the amount is limited to a reservation 
limit. 

 Xen does not guarantee to allocate contiguous regions 
of memory, guest OSes will create the illusion of 
contiguous physical memory. 

 Xen supports efficient hardware to physical address 
mapping through a shared translation array, readable 
by all domains – updates to this are validated by Xen. 

 



XEN : Network Management 

 Xen provides the abstraction of a virtual firewall router 
(VFR), where each domain has one or more Virtual 
network interface (VIF) logically attached to this VFR. 

 The VIF contains two I/O rings of buffer descriptors, 
one for transmitting and the other for receiving  

 Each direction has a list of associated rules of the form 
(<pattern>,<action>) – if the pattern matches then the 
associated action applied. 

 Domain0 is responsible for implementing the rules over 
the different domains. 

 To ensure fairness in transmitting packet they implement 
round-robin packet scheduler. 



XEN : Disk Management  

 Only Domain0 has direct unchecked access to the 
physical disks.  

 Other Domains access the physical disks through virtual 
block devices (VBDs) which is maintained by domain0. 

 VBS comprises a list of associated ownership and access 
control information, and is accessed via I/O ring. 

 A translation table is maintained for each VBD by the 
hypervisor, the entries in the VBD’s are controlled by 
domain0. 

 Xen services batches of requests from competing 
domains in a simple round-robin fashion. 



XEN : Building a New Domain 

 Building initial guest OS structures for new domains 

is done by domain0. 

 Advantages are reduced hypervisor complexity 

and improved robustness. 

 The building process can be extended and 

specialized to cope with new guest OSes. 



XEN : EVALUATION 

 Different types of evaluations: 

 Relative Performance. 

 Operating system benchmarks. 

 Concurrent Virtual Machines. 

 Performance Isolation. 

 Scalability 

 



XEN : Experimental Setup 

 Dell 2650 dual processor 2.4GHz Xeon server with 2GB 
RAM  

 A Broadcom Tigon 3 Gigabit Ethernet NIC. 

 A single Hitachi DK32EJ 146GB 10k RPM SCSI disk. 

 Linux Version 2.4.21 was used throughout, compiled for 
architecture for native and VMware  guest OS experiments– 
i686 

 Xeno-i686 architecture for Xen. 

 Architecture um for UML (user mode Linux) 

 The products to be compared are native Linux (L), XenoLinux 
(X), VMware Workstation 3.2 (V) and User Mode Linux (U) 



XEN : Relative Performance 

 Complex application-level benchmarks that exercise the whole system have 
been employed to characterize performance. 

 First suite contains a series of long-running computationally-intensive 
applications to measure the performance of system’s processor, memory 
system and compiler quality. 

 Almost all execution are all in user-space, all VMMs exhibit low overhead. 

 Second, the total elapsed time taken to build a default configuration of the 
Linux 2.4.21 kernel on a local ext3 file system with gcc 2.96 

 Xen – 3% overhead, others more significant slowdown. 

 Third and fourth, experiments performed using PostgreSQL 7.1.3 database, 
exercised by the Open Source Database Benchmark Suite (OSDB) for multi-
user Information Retrieval (IR) and On-Line Transaction Processing (OLTP) 
workloads 

 PostgreSQL places considerable load on the operating system which leads to 
substantial virtualization overheads on VMware and UML. 



XEN : Relative Performance 

 Fifth, dbench program is a file system benchmark 
derived from ‘NetBench’ 

 Throughput experienced by a single client performing 
around 90,000 file system operations. 

 Sixth, a complex application-level benchmark for 
evaluating web servers and the file systems 

 30% are dynamic content generation, 16% are HTTP POST 
operations and 0.5% execute a CGI script. There is up to 
180Mb/s of TCP traffic and disk activity on 2GB dataset. 

 XEN fares well with 1% performance of native Linux, 
VMware and UML less than a third of the number of clients 
of the native Linux system. 



XEN : Relative Performance 



XEN : Operating System Benchmarks 



XEN : Operating System Benchmarks 

 Table 5, mmap latency and page 
fault latency. 

 Despite two transitions into Xen 
per page, the overhead is 
relatively modest. 

 Table 6, TCP performance over 
Gigabit Ethernet LAN. 

 Socket size of 128kb 

 Results are median of 9 
experiments transferring 400MB 

 Default Ethernet MTU of 1500 
bytes and dial-up MTU of 500-
byte. 

 XenoLinux’s page-flipping 
technique achieves very low 
overhead. 



XEN : Concurrent Virtual Machines 

 In Figure 4,Xen’s interrupt 
load balancer identifies the 
idle CPU and diverts all 
interrupt processing to it, and 
also the number of domains 
increases, Xen’s performance 
improves. 

 In Figure 5, Increase in number 
of domains further causes 
reduction in throughput which 
can be attributed to increased 
context switching and disk 
head movement. 



XEN : Scalability 

 They examine Xen to scale of 128 domains. 

 The minimum physical memory for a domain booted 

with XenoLinux is 64MB. And Xen itself maintains only 

20kB of state per domain. 

 Figure 6, performance overhead of context switching 

between large number of domains. 

 



Debate 

 What should a VMM actually “do”? 

 Hand: Argues that Xen is the most elegant solution and 
that the key is to efficiently share resources while 
avoiding “trust inversions” 

 Disco: Premise is that guest O/S can’t easily be 
changed and hence must be transparently ported 

 Heiser: For him, key is that smaller kernel can be 
verified more completely (leads to L4... then SEL4) 

 Tornado, Barrelfish: Focus on multicore leads to 
radically new architectures.  How does this impact 
virtualization debate? 


