
VMMS: DISCO AND XEN

Ken Birman CS6410

Edouard Bugnion, Scott Devine, and Mendel

Rosenblum

Disco (First version of VMWare)

Virtualization
3

 “a technique for hiding the physical characteristics of

computing resources from the way in which other

systems, applications, or end users interact with those

resources. This includes making a single physical

resource appear to function as multiple logical

resources; or it can include making multiple physical

resources appear as a single logical resource”

4

Old idea from the 1960s

 IBM VM/370 – A VMM for IBM mainframe
 Multiple OS environments on expensive hardware

 Desirable when few machine around

 Popular research idea in 1960s and 1970s
 Entire conferences on virtual machine monitors

 Hardware/VMM/OS designed together

 Interest died out in the 1980s and 1990s
 Hardware got more cheaper

 Operating systems got more powerful (e.g. multi-user)

5

A Return to Virtual Machines

 Disco: Stanford research project (SOSP ’97)

 Run commodity OSes on scalable multiprocessors

 Focus on high-end: NUMA, MIPS, IRIX

 Commercial virtual machines for x86 architecture

 VMware Workstation (now EMC) (1999-)

 Connectix VirtualPC (now Microsoft)

 Research virtual machines for x86 architecture

 Xen (SOSP ’03)

 plex86

 OS-level virtualization

 FreeBSD Jails, User-mode-linux, UMLinux

6

Overview

 Virtual Machine

 A fully protected and isolated copy of the underlying

physical machine’s hardware. (definition by IBM)”

 Virtual Machine Monitor

 A thin layer of software that's between the hardware and

the Operating system, virtualizing and managing all

hardware resources.

 Also known as “Hypervisor”

7

Classification of Virtual Machines

8

Classification of Virtual Machines

 Type I

 VMM is implemented directly on the physical hardware.

 VMM performs the scheduling and allocation of the system’s

resources.

 IBM VM/370, Disco, VMware’s ESX Server, Xen

 Type II

 VMMs are built completely on top of a host OS.

 The host OS provides resource allocation and standard execution

environment to each “guest OS.”

 User-mode Linux (UML), UMLinux

Disco: Challenges

 Overheads

• Additional Execution

• Virtualization I/O

• Memory management for multiple VMs

 Resource Management

• Lack of information to make good policy decisions

 Communication & Sharing

• Interface to share memory between multiple VMs

Baseed on slides from 2011fa: Ashik R

Disco: Interface

• Processors – Virtual CPU

• Memory

• I/O Devices

Disco: Virtual CPUs

 Direct Execution on the real CPU

 Intercept Privileged Instructions

 Different Modes:

• Kernel Mode: Disco

• Supervisor Mode: Virtual Machines

• User Mode: Applications

Physical

CPU

Virtual

CPU

Normal

Computation

Disco

DM

A

Disco: Memory Virtualization

 Adds a level of address translation

 Uses Software reloaded TLB and pmap

 Flushes TLB on VCPU Switch

 Uses second level Software TLB

Disco: Memory Management

 Affinity Scheduling

 Page Migration

 Page Replication

 memmap

Disco: I/O Virtualization

 Virtualizes access to I/O devices and intercepts all device
access

 Adds device drivers in to OS

 Special support for Disk and Network access

 Copy-on-write

 Virtual Subnet

 Allows memory sharing between VMs agnostic of each other

Running Commodity OSes

 Changes for MIPS Architecture

• Required to relocate the unmapped segment

 Device Drivers

• Added device drivers for I/O devices.

 Changes to the HAL

• Inserted some monitor calls in the OS

Experimental Results

• Uses Sim OS Simulator for Evaluations

Disco: Takeaways

 Develop system s/w with less effort

 Low/Modest overhead

 Simple solution for Scalable Hardware

 Subsequent history

 Rewritten into VMWare, became a major product

 Performance hit a subject of much debate but successful

even so, and of course evolved greatly

 Today a huge player in cloud market

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris,

Alex Ho, Rolf Neugebauery, Ian Pratt, Andrew Wareld

XEN AND THE ART OF

VIRTUALIZATION

Xen’s Virtualization Goals

 Isolation

 Support different Operating Systems

 Performance overhead should be small

Reasons to Virtualize

 Systems hosting multiple applications on a shared

machine

 undergo the following problems:

 Do not support adequate isolation

 Affect of Memory Demand, Network Traffic,

Scheduling Priority and Disk Access on process’s

performance

 System Administration becomes Difficult

XEN : Introduction

 A Para-Virtualized Interface

 Can host Multiple and different Operating Systems

 Supports Isolation

 Performance Overhead is minimum

 Can Host up to 100 Virtual Machines

XEN : Approach

 Drawbacks of Full Virtualization with respect to x86 architecture

 Support for virtualization not inherent in x86 architecture

 Certain privileged instructions did not trap to the VMM

 Virtualizing the MMU efficiently was difficult

 Other than x86 architecture deficiencies, it is sometimes required to view
the real and virtual resources from the guest OS point of view

 Xen’s Answer to the Full Virtualization problem:

 It presents a virtual machine abstraction that is similar but not identical
to the underlying hardware -para-virtualization

 Requires Modifications to the Guest Operating System

 No changes are required to the Application Binary Interface (ABI)

Terminology Used

 Guest Operating System (OS) – refers to one of the

operating systems that can be hosted by XEN.

 Domain – refers to a virtual machine within which a

Guest OS runs and also an application or

applications.

 Hypervisor – XEN (VMM) itself.

XEN’s Virtual Machine Interface

 The virtual machine interface can be broadly

 classified into 3 parts. They are:

 Memory Management

 CPU

 Device I/O

XEN’s VMI : Memory Management

 Problems

 x86 architecture uses a hardware managed TLB

 Segmentation

 Solutions

 One way would be to have a tagged TLB, which is currently supported by some
RISC architectures

 Guest OS are held responsible for allocating and managing the hardware page
tables but under the control of Hypervisor

 XEN should exist (64 MB) on top of every address space

 Benefits

 Safety and Isolation

 Performance Overhead is minimized

XEN’s VMI : CPU

 Problems

 Inserting the Hypervisor below the Guest OS means that the Hypervisor will be the most
privileged entity in the whole setup

 If the Hypervisor is the most privileged entity then the Guest OS has to be modified to
execute in a lower privilege level

 Exceptions

 Solutions

 x86 supports 4 distinct privilege levels – rings

 Ring 0 is the most and Ring 3 is the least

 Allowing the guest OS to execute in ring 1- provides a way to catch the

 privileged instructions of the guest OS at the Hypervisor

 Exceptions such as memory faults and software traps are solved by registering the
handlers with the Hypervisor

 Guest OS must register a fast handler for system calls with the Hypervisor

 Each guest OS will have their own timer interface

XEN’s VMI: Device I/O

 Existing hardware Devices are not emulated

 A simple set of device abstractions are used – to

ensure protection and isolation

 Data is transferred to and fro using shared memory,

asynchronous buffer descriptor rings – performance

is better

 Hardware interrupts are notified via a event

delivery mechanism to the respective domains

XEN : Cost of Porting Guest OS

 Linux is completely portable
on the Hypervisor - the OS is
called XenoLinux

 Windows XP is in the Process

 Lot of modifications are
required to the XP’s
architecture Independent code
– lots of structures and unions
are used for PTE’s

 Lot of modifications to the
architecture specific code was
done in both the OSes

 In comparing both OSes –
Larger Porting effort for XP

XEN : Control and Management

 Xen exercises just basic control
operations such as access
control, CPU scheduling
between domains etc.

 All the policy and control
decisions with respect to Xen
are undertaken by
management software running
on one of the domains –
domain0

 The software supports creation
and deletion of VBD, VIF,
domains, routing rules etc.

XEN : Detailed Design

 Control Transfer

 Hypercalls – Synchronous calls made from domain to XEN

 Events – Events are used by Xen to notify the domain in an
asynchronous manner

 Data Transfer

 Transfer is done using I/O rings

 Memory for device I/O is provided by the respective domain

 Minimize the amount of work to demultiplex data to a specific
domain

XEN : Data Transfer in Detail

 I/O Ring Structure

 I/O Ring is a circular queue of
descriptors

 Descriptors do not contain I/O data
but indirectly reference a data
buffer as allocated by the guest OS.

 Access to each ring is based on a set
of pointers namely producer and
consumer pointers

 Guest OS associates a unique
identifier with each request, which is
replicated by the response to
address the possible problem of
ordering between requests

XEN : Sub System Virtualization

 The various Sub Systems are :

 CPU Scheduling

 Time and Timers

 Virtual Address Translation

 Physical Memory

 Network Management

 Disk Management

XEN : CPU Scheduling

 Xen uses Borrowed Virtual Time scheduling

 algorithm for scheduling the domains

 Per domain scheduling parameters can be adjusted

using domain0

 Advantages

 Work – Conserving

 Low – Latency Dispatch by using virtual time warping

XEN : Time and Timers

 Guest OSes are provided information about real time,

virtual time and wall clock time

 Real Time – Time since machine boot and is accurately

maintained with respect to the processor’s cycle counter

and is expressed in nanoseconds

 Virtual Time – This time is increased only when the

domain is executing – to ensure correct time slicing

between application processes on its domain

 Wall clock Time – an offset that can be added to the

current real time.

XEN : Virtual Address Translation

 Register guest OSes page tables directly with the MMU

 Restrict Guest OSes to Read only access

 Page table Updates should be validated through the hypervisor to ensure safety

 Each page frame has two properties associated with it namely type and reference
count

 Each page frame at any point in time will have just one of the 5 mutually exclusive
types:

 Page directory (PD), page table (PT), local descriptor table (LDT), global descriptor table
(GDT), or writable (RW).

 A page frame is allocated to page table use after validation and it is pinned to PD
or PT type.

 A frame can’t be re-tasked until reference=0 and it is unpinned.

 To minimize overhead of the above operations in a batch process.

 The OS fault handler takes care of frequently checking for updates to the shadow
page table to ensure correctness.

XEN : Physical Memory

 Physical Memory Reservations or allocations are made
at the time of creation which are statically partitioned,
to provide strong isolation.

 A domain can claim additional pages from the
hypervisor but the amount is limited to a reservation
limit.

 Xen does not guarantee to allocate contiguous regions
of memory, guest OSes will create the illusion of
contiguous physical memory.

 Xen supports efficient hardware to physical address
mapping through a shared translation array, readable
by all domains – updates to this are validated by Xen.

XEN : Network Management

 Xen provides the abstraction of a virtual firewall router
(VFR), where each domain has one or more Virtual
network interface (VIF) logically attached to this VFR.

 The VIF contains two I/O rings of buffer descriptors,
one for transmitting and the other for receiving

 Each direction has a list of associated rules of the form
(<pattern>,<action>) – if the pattern matches then the
associated action applied.

 Domain0 is responsible for implementing the rules over
the different domains.

 To ensure fairness in transmitting packet they implement
round-robin packet scheduler.

XEN : Disk Management

 Only Domain0 has direct unchecked access to the
physical disks.

 Other Domains access the physical disks through virtual
block devices (VBDs) which is maintained by domain0.

 VBS comprises a list of associated ownership and access
control information, and is accessed via I/O ring.

 A translation table is maintained for each VBD by the
hypervisor, the entries in the VBD’s are controlled by
domain0.

 Xen services batches of requests from competing
domains in a simple round-robin fashion.

XEN : Building a New Domain

 Building initial guest OS structures for new domains

is done by domain0.

 Advantages are reduced hypervisor complexity

and improved robustness.

 The building process can be extended and

specialized to cope with new guest OSes.

XEN : EVALUATION

 Different types of evaluations:

 Relative Performance.

 Operating system benchmarks.

 Concurrent Virtual Machines.

 Performance Isolation.

 Scalability

XEN : Experimental Setup

 Dell 2650 dual processor 2.4GHz Xeon server with 2GB
RAM

 A Broadcom Tigon 3 Gigabit Ethernet NIC.

 A single Hitachi DK32EJ 146GB 10k RPM SCSI disk.

 Linux Version 2.4.21 was used throughout, compiled for
architecture for native and VMware guest OS experiments–
i686

 Xeno-i686 architecture for Xen.

 Architecture um for UML (user mode Linux)

 The products to be compared are native Linux (L), XenoLinux
(X), VMware Workstation 3.2 (V) and User Mode Linux (U)

XEN : Relative Performance

 Complex application-level benchmarks that exercise the whole system have
been employed to characterize performance.

 First suite contains a series of long-running computationally-intensive
applications to measure the performance of system’s processor, memory
system and compiler quality.

 Almost all execution are all in user-space, all VMMs exhibit low overhead.

 Second, the total elapsed time taken to build a default configuration of the
Linux 2.4.21 kernel on a local ext3 file system with gcc 2.96

 Xen – 3% overhead, others more significant slowdown.

 Third and fourth, experiments performed using PostgreSQL 7.1.3 database,
exercised by the Open Source Database Benchmark Suite (OSDB) for multi-
user Information Retrieval (IR) and On-Line Transaction Processing (OLTP)
workloads

 PostgreSQL places considerable load on the operating system which leads to
substantial virtualization overheads on VMware and UML.

XEN : Relative Performance

 Fifth, dbench program is a file system benchmark
derived from ‘NetBench’

 Throughput experienced by a single client performing
around 90,000 file system operations.

 Sixth, a complex application-level benchmark for
evaluating web servers and the file systems

 30% are dynamic content generation, 16% are HTTP POST
operations and 0.5% execute a CGI script. There is up to
180Mb/s of TCP traffic and disk activity on 2GB dataset.

 XEN fares well with 1% performance of native Linux,
VMware and UML less than a third of the number of clients
of the native Linux system.

XEN : Relative Performance

XEN : Operating System Benchmarks

XEN : Operating System Benchmarks

 Table 5, mmap latency and page
fault latency.

 Despite two transitions into Xen
per page, the overhead is
relatively modest.

 Table 6, TCP performance over
Gigabit Ethernet LAN.

 Socket size of 128kb

 Results are median of 9
experiments transferring 400MB

 Default Ethernet MTU of 1500
bytes and dial-up MTU of 500-
byte.

 XenoLinux’s page-flipping
technique achieves very low
overhead.

XEN : Concurrent Virtual Machines

 In Figure 4,Xen’s interrupt
load balancer identifies the
idle CPU and diverts all
interrupt processing to it, and
also the number of domains
increases, Xen’s performance
improves.

 In Figure 5, Increase in number
of domains further causes
reduction in throughput which
can be attributed to increased
context switching and disk
head movement.

XEN : Scalability

 They examine Xen to scale of 128 domains.

 The minimum physical memory for a domain booted

with XenoLinux is 64MB. And Xen itself maintains only

20kB of state per domain.

 Figure 6, performance overhead of context switching

between large number of domains.

Debate

 What should a VMM actually “do”?

 Hand: Argues that Xen is the most elegant solution and
that the key is to efficiently share resources while
avoiding “trust inversions”

 Disco: Premise is that guest O/S can’t easily be
changed and hence must be transparently ported

 Heiser: For him, key is that smaller kernel can be
verified more completely (leads to L4... then SEL4)

 Tornado, Barrelfish: Focus on multicore leads to
radically new architectures. How does this impact
virtualization debate?

