CLASSIC SYSTEMS:
UNIX AND MACH

CS6410 Ken Birman

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

(M —rprereeeeerees
it s

iz n

System 1l & ¥ family

System features
[

0 Time-sharing system

0 Hierarchical file system

0 Device-independent |/O

0 Shell-based, tty user interface

0 Filter-based, record-less processing paradigm

01 Major early innovations: “fork” system call for
process creation, file 1/O via a single subsystem,
pipes, |/O redirection to support chains

8/29/2012

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

B

11 Background of authors at Bell Labs
o Both won Turing Awards in 1983

1 Dennis Ritchie
o1 Key developer of The C Programming Lanuage, Unix,
and Multics
11 Ken Thompson

o1 Key developer of the B programming lanuage,
Unix, Multics, and Plan 9

o Also QED, ed, UTF-8

Unix slides based on Hakim's Fall 2011 materials
Mach slides based on materials on the CMU website

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

[
o Classic system and paper

o described almost entirely in 10 pages

0 Key idea
o elegant combination: a few concepts
that fit together well
o Instead of a perfect specialized API for each kind of
device or abstraction, the APl is deliberately small

Version 3 Unix

|

0 1969: Version 1 ran PDP-7

o 1971: Version 3 Ran on PDP-11"s
11 Costing as little as $40k!

0 < 50 KB

0 2 man-years
to write

11 Written in C

PDP-7 PDP-11

File System

Ordinary files (uninterpreted)
Directories (protected ordinary files)
Special files (1/O)

8/29/2012

Uniform 1/O Model

open, close, read, write, seek
Uniform calls eliminates differences between devices

Two categories of files: character (or byte) stream and
block 1/0O, typically 512 bytes per block

other system calls
close, status, chmod, mkdir, In

One way to “talk to the device” more directly
ioctl, a grab-bag of special functionality

lowest level data type is raw bytes, not “records

Directories

root directory

path names

rooted tree

current working directory
back link to parent

multiple links to ordinary files

Special Files

Uniform 1/O model
Each device associated with at least one file

But read or write of file results in activation of device

Advantage: Uniform naming and protection model
File and device 1/O are as similar as possible

File and device names have the same syntax and
meaning, can pass as arguments to programs

Same protection mechanism as regular files

Removable File System

Tree-structured

Mount’ed on an ordinary file

Mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

After mount, virtually no distinction between files on
permanent media or removable media

bin dev b mat s bin dev lib usr

o] L]

Protection

User-world, RWX bits
set-user-id bit

super user is just special user id

File System Implementation

0 System table of i-numbers (i-list)

0 i-nodes

0 path names
(directory is just
a special filel)

01 mount table
01 buffered data N
0 write-behind j

Many devices fit the block model
|
o Disks
o Drums
0 Tape drives
o USB storage
0 Early version of the ethernet interface was
presented as a kind of block device (seek disabled)
01 But many devices used IOCTL operations heavily
Easy to create pipelines
|

o A “pipe” is a process-to-process data stream, could
be implemented via bounded buffers, TCP, etc

0 One process can write on a connection that another
reads, allowing chains of commands

% cat *.txt | grep foo | wc

In combination with an easily programmable shell
scripting model, very powerfull

8/29/2012

I-node Table

1 short, unique name that points at file info.
o allows simple & efficient fsck

1 cannot handle accounting issues

=——> | Inode

Processes and images

0 text, data & stack segments
0 process swapping

0 pid = fork()

0 pipes

o exec(file, argl, ..., argn)

0 pid = wait()

0 exit(status)

The Shell

o emd argl ... argn

0 stdio & 1/O redirection

o filters & pipes

o multi-tasking from a single shell

01 shell is just a program

o Trivial to implement in shell

Redirection, background processes, cmd files, etc

Traps

o Hardware interrupts
o Software signals

o Trap to system routine

Perspective

0 But had many problems too. Here are a few:
File names too short and file system damaged on crash
Didn’t plan for threads and never supported them well
“Select” system call and handling of “signals” was ugly
and out of character w.r.t. other features
Hard to add dynamic libraries (poor handling of
processes with lots of “segments”)
Shared memory and mapped files fit model poorly

O ..in effect, the initial simplicity was at least partly

because of some serious limitations!

p-Kernel trend

o1 Even at outset we wanted to support many versions
of Unix in one “box” and later, Windows and IBM
operating systems too

A question of cost, but also of developer preference
Each platform has its merits

0 Led to a research push: build a micro-kernel, then

host the desired O/S as a customization layer on it
NOT the same as a virtual machine architecture!

In a p-Kernel, the hosted O/S is an “application”,
whereas a VM mimics hardware and runs the real O/S

8/29/2012

Perspective

11 Not designed to meet predefined objective
0 Goal: create a comfortable environment to explore
machine and operating system
1 Other goals
Progrcmmer convenience
Elegance of design

Self-maintaining

Even so, Unix has staying power!

1 Today’s Linux systems are far more comprehensive
yet the core simplicity of Unix APl remains a very
powerful force

01 Struggle to keep things simple has helped keep
O/S developers from making the system
specialized in every way, hard to understand

o Even with modern extensions, Unix has a simplicity
that contrasts with Windows .NET API...

Microkernel vs. Monolithic Systems

Microkernel
based Operating System

Monolithic Kernel
based Operating System

Apphcation

System Cal

Source: http://en.wikipedia.org/wiki/File:0S-structure.svg

Mach History

o CMU Accent operating system
No ability to execute UNIX applications
Single Hardware architecture

o BSD Unix system + Accent concepts

o Mach
Openstep GNU Hurd Professor at Rochester,
then CMU. Now
XNU OSF/1 !
Darwin Mac OS X Microsoft VP Research
System Components
==
text region (; message
threads ; port
task
Task
Thread
Port
Port set port set
Message (ﬁ
Memory object data region
B secondary
= 3 storage
‘memory
bjecl

Mach innovations

01 Extremely sophisticated use of VM hardware
Extensive sharing of pages with various read/write
mode settings depending on situation
Unlike a Unix process, Mach “task” had an assemblage
of segments and pages constructed very dynamically
Most abstractions were mapped to these basic VM
ideas, which also support all forms of Mach IPC

8/29/2012

Design Principles
==
Maintain BSD Compatibility
o Simple programmer
interface PLUS
o Easy portability Diverse architectures.
o Extensive library of Varying network speed
utilities/applications = Simple kernel
o Combine utilities via pipes - Distributed operation
Integrated memory
management and IPC
o Heterogeneous systems
Memory Management and IPC
==

o Memory Management using IPC:
Memory object represented by port(s)

IPC messages are sent to those ports to request operation on
the object

Memory objects can be remote > kernel caches the contents

o IPC using memory-management techniques:
Pass message by moving pointers to shared memory objects

Virtual-memory remapping to transfer large contents
(virtual copy or copy-on-write)

Process Management
Basic Structure

o Tasks/Threads

o Synchronization primitives:
Mach IPC:
= Processes exchanging messages at rendezvous points

= Wait/signal associated with semaphores can be implemented using
IPC

= High priority event-notification used to deliver exceptions, signals
Thread-level synchronization using thread start/stop calls

Process Management
C Thread package

User-level thread library built on top of Mach primitives
Influenced POSIX P Threads standard
Thread-control:

Create/Destroy a thread

Wait for a specific thread to terminate then continue the calling
thread

Yield
Mutual exclusion using spinlocks
Condition Variables (wait, signal)

8/29/2012

Process Management
CPU Scheduler

Only threads are scheduled
Dynamic thread priority number (0 — 127)
based on the exponential average of its CPU usage.
32 global run queues + per processor local queues (ex.
driver thread)
No Central dispatcher
Processors consult run queues to select next thread
List of idle processors
Thread time quantum varies inversely with total number
of threads, but constant over the entire system

Process Management
Exception Handling

Implemented via RPC messages
Exception handling granularities:

Per thread (for error handling)

Per task (for debuggers)
Emulate BSD style signals

Supports execution of BSD programs

Not suitable for multi-threaded environment

Interprocess Communication
Ports + messages

Allow location independence + communication
security
Sender/Receiver must have rights (port name + send
or receive capability)
Ports:
Protected bounded queue in the kernel
System Calls:
Allocate new port in task, give the task all access rights
Deallocate task’s access rights to a port
Get port status
Create backup port
Port sets: Solves a problem with Unix “select”

Interprocess Communication
Ports + messages

Messages:
Header + typed data objects
Header: destination port name, reply port name, message length
In-line data: simple types, port rights
Out-of-line data: pointers
Via virtual-memory management
Copy-on-write
Sparse virtual memory

Interprocess Communication
Ports + messages

NetMsgServer:
user-level capability-based networking daemon
used when receiver port is not on the kernel's computer
Forward messages between hosts
Provides primitive network-wide name service
Mach 3.0 NORMA IPC

Syncronization using IPC:
Used in threads in the same task
Port used as synchronization variable
Receive message > wait
Send message - signal

8/29/2012

Memory Management

Memory Object
Used to manage secondary storage (files, pipes, ...), or data
mapped into virtual memory
Backed by user-level memory managers

Standard system calls for virtual memory functionality

User-level Memory Managers:
Memory can be paged by user-written memory managers

No assumption are made by Mach about memory objects
contents

Kernel calls to support external memory manager
Mach default memory manager

Memory Management
Shared memory

Shared memory provides reduced complexity and
enhanced performance

Fast IPC

Reduced overhead in file management
Mach provides facilities to maintain memory consistency
on different machines

Programmer Interface

System-call level

Emulation libraries and servers

Upcalls made to libraries in task address space, or server
C Threads package

C language interface to Mach threads primitives

Not suitable for NORMA systems
Interface/Stub generator (M/G) for RPC calls

Mach versus Unix

Imagine a threaded program with multiple input
sources (/O streams) and also events like timeouts,
mouse-clicks, asynchronous |/O completions, etc.

In Unix, need a messy select-based central loop.

With Mach, a port-group can handle this in a very
elegant and general way. But forces you to code
directly against the Mach API if the rest of your
program would use the Unix API

Mach Microkernel
summary

Simple kernel abstractions
Hard work is that they use them in such varied ways

Optimizing to exploit hardware to the max while also
matching patterns of use took simple things and made them
remarkably complex

Even the simple Mach “task” (process) model is very
sophisticated compared to Unix

Bottom line: an O/S focused on communication facilities

System Calls:
IPC, Task/Thread/Port, Virtual memory, Mach 3 NORMA IPC

Mach Microkernel
summary

User level
Most use was actually Unix on Mach, not pure Mach
Mach team build several major servers
Memory Managers
NetMsgServer
NetMemServer
FileServer
OS Servers/Emulation libraries
C Threads user-level thread management package

Big picture questions to ask

\

Unix focuses on a very simple process + 1/O model

Mach focused on a very basic / general VM model, then uses
it to support Unix, Windows, and “native” services

\

If Mach mostly is a VM infrastructure, was this the best way
to do that? If Linux needed to extend Unix, was Unix
simplicity as much of a win as people say?

o

Did Mach exhbit a mismatch of goals: a solution (fancy
paging) in search of a platform using those features?

o

Fate of Mach: Some ideas live on in Apple OS/X, Windows!

8/29/2012

