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CLASSIC SYSTEMS:
UNIX AND MACH

Ken BirmanCS6410

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

 Background of authors at Bell Labs
 Both won Turing Awards in 1983

 Dennis Ritchie
 Key developer of The C Programming Lanuage, Unix, 

and Multics

 Ken Thompson
 Key developer of the B programming lanuage, 

Unix, Multics, and Plan 9
 Also QED, ed, UTF-8

Unix slides based on Hakim’s Fall 2011 materials
Mach slides based on materials on the CMU website

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

 Classic system and paper
 described almost entirely in 10 pages

 Key idea
 elegant combination: a few concepts 

that fit together well

 Instead of a perfect specialized API for each kind of 
device or abstraction, the API is deliberately small

System features

 Time-sharing system 
 Hierarchical file system 
 Device-independent I/O 
 Shell-based, tty user interface 
 Filter-based, record-less processing paradigm

 Major early innovations: “fork” system call for 
process creation,  file I/O via a single subsystem, 
pipes, I/O redirection to support chains

Version 3 Unix

 1969: Version 1 ran PDP-7

 1971: Version 3 Ran on PDP-11’s 
 Costing as little as $40k!

 < 50 KB 

 2 man-years 

to write 

 Written in C

PDP-7 PDP-11
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File System

 Ordinary files  (uninterpreted) 

 Directories  (protected ordinary files) 

 Special files  (I/O) 

Uniform I/O Model

 open, close, read, write, seek
 Uniform calls eliminates differences between devices

 Two categories of files: character (or byte) stream and 
block I/O, typically 512 bytes per block 

 other system calls
 close, status, chmod, mkdir, ln

 One way to “talk to the device” more directly
 ioctl, a grab-bag of special functionality

 lowest level data type is raw bytes, not “records”

Directories

 root directory 

 path names 

 rooted tree 

 current working directory 

 back link to parent 

 multiple links  to ordinary files

Special Files

 Uniform I/O model 
 Each device associated with at least one file

 But read or write of file results in activation of device

 Advantage: Uniform naming and protection model
 File and device I/O are as similar as possible

 File and device names have the same syntax and 
meaning, can pass as arguments to programs

 Same protection mechanism as regular files

Removable File System

 Tree-structured 

 Mount’ed on an ordinary file
 Mount replaces a leaf of the hierarchy tree (the 

ordinary file) by a whole new subtree (the hierarchy 
stored on the removable volume)

 After mount, virtually no distinction between files on 
permanent media or removable media

Protection

 User-world, RWX bits 

 set-user-id bit 

 super user is just special user id
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File System Implementation

 System table of i-numbers (i-list)

 i-nodes 

 path names
(directory is just
a special file!)

 mount table 

 buffered data 

 write-behind 

I-node Table

 short, unique name that points at file info. 

 allows simple & efficient fsck

 cannot handle accounting issues

File name Inode# Inode

Many devices fit the block model

 Disks
 Drums
 Tape drives
 USB storage

 Early version of the ethernet interface was 
presented as a kind of block device (seek disabled)

 But many devices used IOCTL operations heavily

Processes and images

 text, data & stack segments 

 process swapping 

 pid = fork() 

 pipes 

 exec(file, arg1, ..., argn) 

 pid = wait() 

 exit(status) 

Easy to create pipelines

 A “pipe” is a process-to-process data stream, could 
be implemented via bounded buffers, TCP, etc

 One process can write on a connection that another 
reads, allowing chains of commands

% cat *.txt | grep foo | wc

 In combination with an easily programmable shell 
scripting model, very powerful!

The Shell

 cmd arg1 ... argn

 stdio & I/O redirection 

 filters & pipes 

 multi-tasking from a single shell 

 shell is just a program

 Trivial to implement in shell
 Redirection, background processes, cmd files, etc
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Traps

 Hardware interrupts 

 Software signals 

 Trap to system routine

Perspective

 Not designed to meet predefined objective

 Goal: create a comfortable environment to explore 
machine and operating system

 Other goals
 Programmer convenience

 Elegance of design

 Self-maintaining

Perspective

 But had many problems too.  Here are a few:
 File names too short and file system damaged on crash
 Didn’t plan for threads and never supported them well
 “Select” system call and handling of “signals” was ugly 

and out of character w.r.t. other features
 Hard to add dynamic libraries (poor handling of 

processes with lots of “segments”)
 Shared memory and mapped files fit model poorly

 ...in effect, the initial simplicity was at least partly 
because of some serious limitations!

Even so, Unix has staying power!

 Today’s Linux systems are far more comprehensive 
yet the core simplicity of Unix API remains a very 
powerful force

 Struggle to keep things simple has helped keep 
O/S developers from making the system 
specialized in every way, hard to understand

 Even with modern extensions, Unix has a simplicity 
that contrasts with Windows .NET API...

-Kernel trend

 Even at outset we wanted to support many versions 
of Unix in one “box” and later, Windows and IBM 
operating systems too
 A question of cost, but also of developer preference
 Each platform has its merits

 Led to a research push: build a micro-kernel, then 
host the desired O/S as a customization layer on it
 NOT the same as a virtual machine architecture!
 In a -Kernel, the hosted O/S is an “application”, 

whereas a VM mimics hardware and runs the real O/S

Microkernel vs. Monolithic Systems

Source: http://en.wikipedia.org/wiki/File:OS-structure.svg 
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Mach History

 CMU Accent operating system
 No ability to execute UNIX applications
 Single Hardware architecture

 BSD Unix system + Accent concepts
 Mach

Darwin

XNU OSF/1
Mac OS X

OpenStep GNU Hurd Professor at Rochester, 
then CMU.  Now 

Microsoft VP Research

Design Principles

Maintain BSD Compatibility
 Simple programmer 

interface
 Easy portability
 Extensive library of 

utilities/applications
 Combine utilities via pipes

PLUS
 Diverse architectures.
 Varying network speed
 Simple kernel
 Distributed operation
 Integrated memory 

management and IPC
 Heterogeneous systems

System Components

task

text region

threads
port

port set

message

 Task

 Thread

 Port

 Port set

 Message

 Memory object data region

memory 
object

secondary 
storage

Memory Management and IPC

 Memory Management using IPC:
 Memory object represented by port(s)
 IPC messages are sent to those ports to request operation on 

the object
 Memory objects can be remote  kernel caches the contents

 IPC using memory-management techniques:
 Pass message by moving pointers to shared memory objects
 Virtual-memory remapping to transfer large contents

(virtual copy or copy-on-write)

Mach innovations

 Extremely sophisticated use of VM hardware
 Extensive sharing of pages with various read/write 

mode settings depending on situation

 Unlike a Unix process, Mach “task” had an assemblage 
of segments and pages constructed very dynamically

 Most abstractions were mapped to these basic VM 
ideas, which also support all forms of Mach IPC

Process Management
Basic Structure

 Tasks/Threads
 Synchronization primitives:

 Mach IPC:
 Processes exchanging messages at rendezvous points
 Wait/signal associated with semaphores can be implemented using 

IPC
 High priority event-notification used to deliver exceptions, signals

 Thread-level synchronization using thread start/stop calls
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Process Management
C Thread package

 User-level thread library built on top of Mach primitives
 Influenced POSIX P Threads standard
 Thread-control:

 Create/Destroy a thread
 Wait for a specific thread to terminate then continue the calling 

thread
 Yield

 Mutual exclusion using spinlocks 
 Condition Variables (wait, signal)

Process Management
CPU Scheduler

 Only threads are scheduled
 Dynamic thread priority number (0 – 127) 

 based on the exponential average of its CPU usage.

 32 global run queues + per processor local queues (ex. 
driver thread)

 No Central dispatcher
 Processors consult run queues to select next thread
 List of idle processors

 Thread time quantum varies inversely with total number 
of threads, but constant over the entire system

Process Management
Exception Handling

 Implemented via RPC messages
 Exception handling granularities:

 Per thread (for error handling)
 Per task (for debuggers)

 Emulate BSD style signals
 Supports execution of BSD programs
 Not suitable for multi-threaded environment

Interprocess Communication
Ports + messages

 Allow location independence + communication 
security

 Sender/Receiver must have rights (port name + send 
or receive capability)

 Ports:
 Protected bounded queue in the kernel
 System Calls:

 Allocate new port in task, give the task all access rights
 Deallocate task’s access rights to a port
 Get port status
 Create backup port

 Port sets: Solves a problem with Unix “select”

Interprocess Communication
Ports + messages

 Messages:
 Header + typed data objects
 Header: destination port name, reply port name, message length 
 In-line data: simple types, port rights
 Out-of-line data: pointers
 Via virtual-memory management
 Copy-on-write

 Sparse virtual memory

Interprocess Communication
Ports + messages

 NetMsgServer: 
 user-level capability-based networking daemon
 used when receiver port is not on the kernel’s computer
 Forward messages between hosts
 Provides primitive network-wide name service

 Mach 3.0 NORMA IPC
 Syncronization using IPC:

 Used in threads in the same task
 Port used as synchronization variable
 Receive message  wait
 Send message  signal
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Memory Management

 Memory Object
 Used to manage secondary storage (files, pipes, …), or data 

mapped into virtual memory
 Backed by user-level memory managers

 Standard system calls for virtual memory functionality
 User-level Memory Managers:

 Memory can be paged by user-written memory managers
 No assumption are made by Mach about memory objects 

contents
 Kernel calls to support external memory manager

 Mach default memory manager

Memory Management
Shared memory

 Shared memory provides reduced complexity and 
enhanced performance
 Fast IPC
 Reduced overhead in file management

 Mach provides facilities to maintain memory consistency 
on different machines

Programmer Interface

 System-call level
 Emulation libraries and servers
 Upcalls made to libraries in task address space, or server

 C Threads package
 C language interface to Mach threads primitives
 Not suitable for NORMA systems

 Interface/Stub generator (MIG) for RPC calls

Mach versus Unix

 Imagine a threaded program with multiple input 
sources (I/O streams) and also events like timeouts, 
mouse-clicks, asynchronous I/O completions, etc.

 In Unix, need a messy select-based central loop.  

 With Mach, a port-group can handle this in a very 
elegant and general way.  But forces you to code 
directly against the Mach API if the rest of your 
program would use the Unix API

Mach Microkernel
summary

 Simple kernel abstractions 
 Hard work is that they use them in such varied ways
 Optimizing to exploit hardware to the max while also 

matching patterns of use took simple things and made them 
remarkably complex

 Even the simple Mach “task” (process) model is very 
sophisticated compared to Unix

 Bottom line: an O/S focused on communication facilities
 System Calls:

 IPC, Task/Thread/Port, Virtual memory, Mach 3 NORMA IPC

Mach Microkernel
summary

 User level 
 Most use was actually Unix on Mach, not pure Mach
 Mach team build several major servers

 Memory Managers
 NetMsgServer
 NetMemServer
 FileServer

 OS Servers/Emulation libraries
 C Threads user-level thread management package
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Big picture questions to ask

 Unix focuses on a very simple process + I/O model
 Mach focused on a very basic / general VM model, then uses 

it to support Unix, Windows, and “native” services

 If Mach mostly is a VM infrastructure, was this the best way 
to do that?  If Linux needed to extend Unix, was Unix 
simplicity as much of a win as people say?

 Did Mach exhbit a mismatch of goals: a solution (fancy 
paging) in search of a platform using those features?

 Fate of Mach: Some ideas live on in Apple OS/X, Windows!


