
Ordering and
Consistent Cuts

Edward Tremel

11/7/2013

Synchronizing
Distributed Systems

• Time, Clocks, and the Ordering of Events in

Distributed Systems
o How to agree on an order of events across asynchronous

processes

o Synchronized concurrent execution of a state machine

o Synchronizing clocks across a network

• Distributed Snapshots: Determining Global

States of Distributed Systems
o How to record state of a distributed system without losing

information

o Determining when a stable property is satisfied

o Synchronizing phases of distributed computation

11/7/2013 Ordering and Consistent Cuts 2

Or: Leslie Lamport
Invents Things

• Two of the most

influential papers in

distributed systems

• Almost entirely original

work by Leslie Lamport

• Distributed Systems was

still a brand-new field
o PODC not until 1982

11/7/2013 Ordering and Consistent Cuts 3

Also Invented by Lamport
• Sequential consistency

• Bakery algorithm
o Mutual exclusion without

hardware support

• Atomic registers

• Byzantine Generals’

Problem

• Paxos Algorithm

• Temporal Logic of

Actions

• LaTeX

11/7/2013 Ordering and Consistent Cuts 4

Leslie Lamport chilling on a boat with Andy van Dam

(left: Hector Garcia-Molina, distributed systems

researcher)

11/7/2013 Ordering and Consistent Cuts 5

Biographical Highlights
• BS in Math from MIT, 1960

• MA, PhD in Math from
Brandeis, 1972

• Taught math at Marlboro
College 1965-69

• Research in industry
o Massachusetts Computer Associates

(1970-77)

o SRI International (1977-85)

o DEC/Compaq (1985-2001)

o Microsoft Research (2001-)

• Many awards, including 2000
PODC Influential Paper
award for Time, Clocks, and
the Ordering of Events

11/7/2013 Ordering and Consistent Cuts 6

Time, Clocks, and the
Ordering of Events in a

Distributed System

11/7/2013 Ordering and Consistent Cuts 7

• Written by Lamport in 1978

• Inspired by The Maintenance of Duplicate

Databases (Paul Johnson and Bob Thomas)
o Database update messages must be timestamped

o Updates are ordered by timestamp, not message receive order

o Did not account for clock inconsistency

• Intended goal: Show how to implement arbitrary

distributed state machine

Setup
• Assumption: Distributed systems don’t have a

common (physical) clock

• Still need to agree on when events happened

• Nodes in distributed system have shared state, must

apply updates in same order to stay consistent

• Examples:
o Bank servers at different branches, need to know order of transactions

o Distributed database, need to know when value was added or changed

o Distributed filesystem, need to know order of writes

o Distributed lock manager, need to agree on who got the lock

11/7/2013 Ordering and Consistent Cuts 8

Setup

• Assumption: Distributed systems communicate by

sending messages over directed channels
o No other way to share state between nodes

o No Ethernet (shared line)

o Basically the same model as microkernel processes

• Assumption: Channels are FIFO ordered and reliable

11/7/2013 Ordering and Consistent Cuts 9

“Happened Before”

11/7/2013 Ordering and Consistent Cuts 10

Fig. 1 from Time, Clocks, and the Ordering of Events

“Happened Before”
• Natural, straightforward partial order on events

• 𝑎 → 𝑏 if a and b are in the same process and a

precedes b in execution

• 𝑎 → 𝑏 if a is sending of message by one process and

b is receipt of message by another process

• Events in different processes that are not message

sends/receives cannot be ordered

• Relation is transitive: 𝑎 → 𝑏 and 𝑏 → 𝑐 means 𝑎 → 𝑐

• Not reflexive: 𝑎 → 𝑎 is impossible

11/7/2013 Ordering and Consistent Cuts 11

Logical Clocks
• Concrete representation of “happened before”

• Each process has a clock
o Assigns a number to an event

o Event = send message, receive message, computation (internal)

o Monotonically increasing

• If a and b are events in process i and a comes

before b, then Ci(a) < Ci(b)

• If a is the sending of a message by process i, and b

is the receipt of the message by process j, then

Ci(a) < Cj(b)

11/7/2013 Ordering and Consistent Cuts 12

Visualizing Clock Ticks

11/7/2013 Ordering and Consistent Cuts 13

Figs. 2 and 3 from Time, Clocks, and the Ordering of Events

Synchronizing Clocks

• Clock increments between events

• Every message sent with timestamp of sending

process

• When process receives message, it must advance

its clock to greater than message’s timestamp

11/7/2013 Ordering and Consistent Cuts 14

p1

p2

C1

C2

1 2

1 2 3

3

4 5 6

Tm=2 Tm=6

7 8

7

Ordering Events
• Clocks by themselves are still a partial order on

events

• Total Order: Clocks plus arbitrary tiebreaking

• Given a total order on processes, can construct a

total order on events

• 𝑎 ⇒ 𝑏 if Ci(a) < Cj(b)

• 𝑎 ⇒ 𝑏 if Ci(a) = Cj(b) and process i is ordered before

process j

• Total order on processes: process IDs, machine IPs

11/7/2013 Ordering and Consistent Cuts 15

State Machine Replication
• Each process keeps its own copy of the state

• Processes send messages with commands

• Command messages are cached and

acknowledged

• A process can execute a command when it has

learned of all commands issued before that

command’s timestamp

• Progress guaranteed because communication

channels are reliable and FIFO

• State machine replication without reliable channels:

much harder problem, also solved by Lamport

11/7/2013 Ordering and Consistent Cuts 16

Physical Clocks
• Can use physical clocks instead of logical clocks, as

long as they can only be set forward

• Assume 𝜇𝑚 = minimum duration of message transit

• Each process’s physical clock ticks continuously

• When a process receives a message, it advances its

clock to message timestamp + 𝜇𝑚

• Difference between any two clocks can be

bounded if error in clock rates and unpredictable

message delay can be bounded
o Requires sending a message at least once every 𝜏 seconds

11/7/2013 Ordering and Consistent Cuts 17

Significance
• Lamport’s opinion:

“Jim Gray once told me that he had heard two different opinions of this paper: that
it's trivial and that it's brilliant. I can't argue with the former, and I am
disinclined to argue with the latter.”

• References: 4

• Citations: 8196

• Basis of vector clocks (Fidge), which are often used

in distributed systems

• Also network time, Paxos protocol

• But most people remember it for causality relation

or distributed mutual exclusion, not state machines

11/7/2013 Ordering and Consistent Cuts 18

Questions
• Is this brilliant? Trivial? Both?

• What’s more important: intended goal or

remembered result?

• Is application to physical clocks necessary or

helpful?
o What about inescapable forward drift? Clocks can’t be set back…

11/7/2013 Ordering and Consistent Cuts 19

Distributed Snapshots

11/7/2013 Ordering and Consistent Cuts 20

K. Mani Chandy

• PhD from MIT

in EE, 1969

• Professor at UT

Austin 1970-89

• Professor at

Caltech since

1989

Leslie Lamport

• At this point,

working at

Stanford

Research

Institute (SRI

International)

Origins of the Paper
“The distributed snapshot algorithm described here came about when I visited
Chandy, who was then at the University of Texas in Austin. He posed the
problem to me over dinner, but we had both had too much wine to think about
it right then. The next morning, in the shower, I came up with the
solution. When I arrived at Chandy's office, he was waiting for me with the
same solution. I consider the algorithm to be a straightforward application of
the basic ideas from [Time, Clocks, and the Ordering of Events in Distributed
Systems].”

—Leslie Lamport

• Acknowledgements: Dijkstra, Hoare, Fred Schneider

11/7/2013 Ordering and Consistent Cuts 21

The Problem
• Recording state of a distributed system is important

o Determining stable properties, such as “phase completed”

• No way to ensure all nodes record state at

“exactly” the same time

• Naïve solution can record an impossible state

o Record state of p and c’ while p has token

o Then p sends token along c

o Record state of q and c, showing token is in c

o Snapshot shows token in two places, but only one token exists!

11/7/2013 Ordering and Consistent Cuts 22

Consistent Cuts

• Need a consistent cut: If an event is in the snapshot,

all events that happen before it must be in snapshot

11/7/2013 Ordering and Consistent Cuts 23

(image copied from Dinesh Bhat’s 2010 presentation)

inconsistent consistent

The Solution
• Send a marker along all channels immediately after

recording state

• Upon receipt of a marker along channel c:
o Record process state if not already recorded

o Record state of c as all messages received between recording process

state and receiving marker

• Eventually markers will reach all processes, so all

state will be recorded

11/7/2013 Ordering and Consistent Cuts 24

Assumptions
• Graph of processes is strongly connected

o If your network is really Ethernet, it is

• Processes can atomically record their own state

• Processes keep log of messages received

• Processes do not fail

• Channels are still reliable and FIFO

• There is some way to collect the snapshot from all

nodes once done recording

11/7/2013 Ordering and Consistent Cuts 25

Example

11/7/2013 Ordering and Consistent Cuts 26

p

q

r
s

2
1

(shamelessly stolen from Isaac’s presentation last year)

Example

11/7/2013 Ordering and Consistent Cuts 27

p

q

r
s

1
2

r’s
state

Example

11/7/2013 Ordering and Consistent Cuts 28

p

q

r
s

1

2

r’s
state

s’s
state

3

Example

11/7/2013 Ordering and Consistent Cuts 29

p

q

r
s

1

r’s
state

s’s
state

3

2

Example

11/7/2013 Ordering and Consistent Cuts 30

p

q

r
s

1

r’s
state

s’s
state

3

2

q’s
state

4

Example

11/7/2013 Ordering and Consistent Cuts 31

p

q

r
s

1

r’s
state

s’s
state

3

2

q’s
state

p’s
state

Example

11/7/2013 Ordering and Consistent Cuts 32

p

q

r
s

r’s
state

s’s
state

2

q’s
state

p’s
state

1 3

Example

11/7/2013 Ordering and Consistent Cuts 33

p

q

r
s

r’s
state

s’s
state

2

q’s
state

p’s
state

1 3

Example

11/7/2013 Ordering and Consistent Cuts 34

p

q

r
s

r’s
state

s’s
state

2

q’s
state

p’s
state

1 3

Properties of Snapshot
• Produces a consistent cut: If a message’s receipt is

recorded, then its sending is also recorded (FIFO)

• Global system state recorded in snapshot may not

have ever occurred

• But it will be possible and reachable by a re-

ordering of events within snapshot window

• Sequentially consistent with state actually reached

by system during snapshot
o Only relative order of unconnected events on different processes is

changed

• Only events within snapshot window affected

11/7/2013 Ordering and Consistent Cuts 35

Significance
• References: 11, one of which doesn’t exist

• Citations: 2564

• First “consistent cut” algorithm, basis of more

complex ones such as Mattern’s

• Useful for logging, fault-tolerance

11/7/2013 Ordering and Consistent Cuts 36

Questions
• This still assumes reliable, FIFO channels between

processes. Is that reasonable?

• Is the “sequentially consistent” snapshot good

enough?

• Are clocks actually necessary for this algorithm?

(Lamport claims it’s an extension of clocks).

• Is it efficient to use this algorithm for stability

detection?

11/7/2013 Ordering and Consistent Cuts 37

