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Synchronizing 
Distributed Systems 

• Time, Clocks, and the Ordering of Events in 

Distributed Systems 
o How to agree on an order of events across asynchronous 

processes 

o Synchronized concurrent execution of a state machine 

o Synchronizing clocks across a network 

• Distributed Snapshots: Determining Global 

States of Distributed Systems 
o How to record state of a distributed system without losing 

information 

o Determining when a stable property is satisfied 

o Synchronizing phases of distributed computation 
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Or: Leslie Lamport 
Invents Things 

• Two of the most 

influential papers in 

distributed systems 

 

• Almost entirely original 

work by Leslie Lamport 

 

• Distributed Systems was 

still a brand-new field 
o PODC not until 1982 
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Also Invented by Lamport 
• Sequential consistency 

• Bakery algorithm 
o Mutual exclusion without 

hardware support 

• Atomic registers 

• Byzantine Generals’ 

Problem 

• Paxos Algorithm 

• Temporal Logic of 

Actions 

• LaTeX 

11/7/2013 Ordering and Consistent Cuts 4 



Leslie Lamport chilling on a boat with Andy van Dam 

(left: Hector Garcia-Molina, distributed systems 

researcher) 
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Biographical Highlights 
• BS in Math from MIT, 1960 

• MA, PhD in Math from 
Brandeis, 1972 

• Taught math at Marlboro 
College 1965-69 

• Research in industry 
o Massachusetts Computer Associates  

(1970-77) 

o SRI International (1977-85) 

o DEC/Compaq (1985-2001) 

o Microsoft Research (2001-) 

• Many awards, including 2000 
PODC Influential Paper 
award for Time, Clocks, and 
the Ordering of Events 
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Time, Clocks, and the 
Ordering of Events in a 

Distributed System 
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• Written by Lamport in 1978 

• Inspired by The Maintenance of Duplicate 

Databases (Paul Johnson and Bob Thomas) 
o Database update messages must be timestamped 

o Updates are ordered by timestamp, not message receive order 

o Did not account for clock inconsistency 

• Intended goal: Show how to implement arbitrary 

distributed state machine 

 



Setup 
• Assumption: Distributed systems don’t have a 

common (physical) clock 

• Still need to agree on when events happened 

• Nodes in distributed system have shared state, must 

apply updates in same order to stay consistent 

• Examples: 
o Bank servers at different branches, need to know order of transactions 

o Distributed database, need to know when value was added or changed 

o Distributed filesystem, need to know order of writes 

o Distributed lock manager, need to agree on who got the lock 
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Setup 

• Assumption: Distributed systems communicate by 

sending messages over directed channels 
o No other way to share state between nodes 

o No Ethernet (shared line) 

o Basically the same model as microkernel processes 

• Assumption: Channels are FIFO ordered and reliable 
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“Happened Before” 
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Fig. 1 from Time, Clocks, and the Ordering of Events 



“Happened Before” 
• Natural, straightforward partial order on events 

• 𝑎 → 𝑏 if a and b are in the same process and a 

precedes b in execution 

• 𝑎 → 𝑏 if a is sending of message by one process and 

b is receipt of message by another process 

• Events in different processes that are not message 

sends/receives cannot be ordered 

• Relation is transitive: 𝑎 → 𝑏 and 𝑏 → 𝑐 means 𝑎 → 𝑐 

• Not reflexive: 𝑎 → 𝑎 is impossible 
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Logical Clocks 
• Concrete representation of “happened before” 

• Each process has a clock 
o Assigns a number to an event 

o Event = send message, receive message, computation (internal) 

o Monotonically increasing 

• If a and b are events in process i and a comes 

before b, then Ci(a) < Ci(b) 

• If a is the sending of a message by process i, and b 

is the receipt of the message by process j, then 

Ci(a) < Cj(b) 
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Visualizing Clock Ticks 
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Figs. 2 and 3 from Time, Clocks, and the Ordering of Events 



Synchronizing Clocks 

• Clock increments between events 

• Every message sent with timestamp of sending 

process 

• When process receives message, it must advance 

its clock to greater than message’s timestamp 
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Ordering Events 
• Clocks by themselves are still a partial order on 

events 

• Total Order: Clocks plus arbitrary tiebreaking 

• Given a total order on processes, can construct a 

total order on events 

• 𝑎 ⇒ 𝑏 if Ci(a) < Cj(b) 

• 𝑎 ⇒ 𝑏 if Ci(a) = Cj(b) and process i is ordered before 

process j 

• Total order on processes: process IDs, machine IPs 
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State Machine Replication 
• Each process keeps its own copy of the state 

• Processes send messages with commands 

• Command messages are cached and 

acknowledged 

• A process can execute a command when it has 

learned of all commands issued before that 

command’s timestamp 

• Progress guaranteed because communication 

channels are reliable and FIFO 

• State machine replication without reliable channels: 

much harder problem, also solved by Lamport 
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Physical Clocks 
• Can use physical clocks instead of logical clocks, as 

long as they can only be set forward 

• Assume 𝜇𝑚 = minimum duration of message transit 

• Each process’s physical clock ticks continuously 

• When a process receives a message, it advances its 

clock to message timestamp + 𝜇𝑚 

• Difference between any two clocks can be 

bounded if error in clock rates and unpredictable 

message delay can be bounded 
o Requires sending a message at least once every 𝜏 seconds 
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Significance 
• Lamport’s opinion: 

“Jim Gray once told me that he had heard two different opinions of this paper: that 
it's trivial and that it's brilliant.  I can't argue with the former, and I am 
disinclined to argue with the latter.” 

• References: 4 

• Citations: 8196 

• Basis of vector clocks (Fidge), which are often used 

in distributed systems 

• Also network time, Paxos protocol 

• But most people remember it for causality relation 

or distributed mutual exclusion, not state machines 
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Questions 
• Is this brilliant? Trivial? Both? 

• What’s more important: intended goal or 

remembered result? 

• Is application to physical clocks necessary or 

helpful?  
o What about inescapable forward drift? Clocks can’t be set back… 
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Distributed Snapshots 
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K. Mani Chandy 

• PhD from MIT 

in EE, 1969 

• Professor at UT 

Austin 1970-89 

• Professor at 

Caltech since 

1989 

Leslie Lamport 

• At this point, 

working at 

Stanford 

Research 

Institute (SRI 

International) 



Origins of the Paper 
“The distributed snapshot algorithm described here came about when I visited 
Chandy, who was then at the University of Texas in Austin.  He posed the 
problem to me over dinner, but we had both had too much wine to think about 
it right then.  The next morning, in the shower, I came up with the 
solution.  When I arrived at Chandy's office, he was waiting for me with the 
same solution.  I consider the algorithm to be a straightforward application of 
the basic ideas from [Time, Clocks, and the Ordering of Events in Distributed 
Systems].” 

—Leslie Lamport 

 

• Acknowledgements: Dijkstra, Hoare, Fred Schneider 
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The Problem 
• Recording state of a distributed system is important 

o Determining stable properties, such as “phase completed” 

• No way to ensure all nodes record state at 

“exactly” the same time 

• Naïve solution can record an impossible state 

 

 

 
o Record state of p and c’ while p has token 

o Then p sends token along c 

o Record state of q and c, showing token is in c  

o Snapshot shows token in two places, but only one token exists! 
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Consistent Cuts 

• Need a consistent cut: If an event is in the snapshot, 

all events that happen before it must be in snapshot 
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(image copied from Dinesh Bhat’s 2010 presentation) 

inconsistent consistent 



The Solution 
• Send a marker along all channels immediately after 

recording state 

• Upon receipt of a marker along channel c: 
o Record process state if not already recorded 

o Record state of c as all messages received between recording process 

state and receiving marker 

• Eventually markers will reach all processes, so all 

state will be recorded 
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Assumptions 
• Graph of processes is strongly connected 

o If your network is really Ethernet, it is 

• Processes can atomically record their own state 

• Processes keep log of messages received 

• Processes do not fail 

• Channels are still reliable and FIFO 

• There is some way to collect the snapshot from all 

nodes once done recording 
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Example 
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Example 
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Example 
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Example 
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Example 
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Properties of Snapshot 
• Produces a consistent cut: If a message’s receipt is 

recorded, then its sending is also recorded (FIFO) 

• Global system state recorded in snapshot may not 

have ever occurred 

• But it will be possible and reachable by a re-

ordering of events within snapshot window 

• Sequentially consistent with state actually reached 

by system during snapshot 
o Only relative order of unconnected events on different processes is 

changed 

• Only events within snapshot window affected 
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Significance 
• References: 11, one of which doesn’t exist 

• Citations: 2564 

• First “consistent cut” algorithm, basis of more 

complex ones such as Mattern’s 

• Useful for logging, fault-tolerance 
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Questions 
• This still assumes reliable, FIFO channels between 

processes. Is that reasonable? 

• Is the “sequentially consistent” snapshot good 

enough?  

• Are clocks actually necessary for this algorithm? 

(Lamport claims it’s an extension of clocks). 

• Is it efficient to use this algorithm for stability 

detection?  
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