

Cloud Scale Storage Systems

Sean Ogden
October 30, 2013

Evolution

● P2P routing/DHTs (Chord, CAN, Pastry, etc.)
● P2P Storage (Pond, Antiquity)

– Storing Greg's baby pictures on machines of
untrusted strangers that are connected with wifi

● Cloud storage
– Store Greg's baby pictures on trusted data center

network at Google

Cloud storage – Why?

● Centralized control, one administrative domain
● Can buy seemingly infinite resources
● Network links are high bandwidth
● Availability is important
● Many connected commodity machines with

disks is cheap to build
– Reliability from software

The Google File System

Sanjay Ghemawat, Howard Gobioff, Shun-tak Leung

GFS Assumptions and Goals

● Given
– Large files, large sequential writes

– Many concurrent appending applications

– Infrequent updates

– Trusted network

● Provide
– Fast, well defined append operations

– High throughput I/O

– Fault tolerance

GFS Components

● Centralized master
● Chunk Server
● Clients

GFS Architecture

GFS Chunk Server

GFS Chunk server

● Holds chunks of data, 64MB by default
● Holds checksums of the chunks
● Responds to queries from master
● Receives data directly from clients
● Can be a delegate authority for a block

GFS Master

GFS Master

● Holds file system metadata
– What chunk server holds which chunk

– Metadata table is not persistent

● Directs clients
● Centralized

– Ease of implementation

– Can do load balancing

– Not in the data path

● Replicated for fault tolerance

GFS Client

GFS Client

● Queries master for metadata
● Reads/writes data directly to chunk servers

Write control and Data Flow

Read control and data flow

Supported operations

● Open
● Close
● Create
● Read
● Write
● Delete
● Atomic record append
● Snapshot

Consistency

● Relaxed consistency model
● File namespace mutations are atomic
● Files may be consistent and/or defined
● Consistent

– All clients will see the same data

● Defined
– Consistent and entire mutation is visible by clients

Consistency

Write Record Append

Serial success defined
defined interspersed with

inconsistent
Concurrent successes consistent but not defined

Failure inconsistent

“Atomic” record appends

● Most frequently used operation
● “At least once” guarantee
● Failed append operation can cause blocks to

have result of partially complete mutation
● Suppose we have a block that contains

“DEAD”, and we append(f, “BEEF”)

Replica 1 DEAD BEEF BEEF

Replica 2 DEAD BE BEEF

Replica 3 DEAD BEEF

Performance

Performance notes

● It goes up and to the right
● Write throughput limited by network due to

replication
● Master saw 200 ops/second

GFS Takeaways

● There can be benefits to a centralized master
– If it is not in the write path

● Treat failure as the norm
● Ditching old standards can lead to drastically

different designs that better fit a specific goal

Discussion

● Does GFS work for anyone outside of Google?
● Are industry papers useful to the rest of us?
● What are the pros/cons of single master in this system?
● Will there ever be a case where single master could be a

problem?
● Could we take components of this and improve on them

in some way for different work loads?

Windows Azure Storage
Brad Calder, Ju Wang, Aaron Ogus, Niranjan
Nilakantan, Arild Skjolsvold, Sam McKelvie,

Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin

Simitci, Jaidev Haridas, Chakravarthy Uddaraju,
Hemal Khatri, Andrew Edwards, Vaman Bedekar,

Shane Mainali, Rafay Abbasi, Arpit Agarwal,
Mian Fahim ul Haq, Muhammad Ikram ul Haq,

Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram

Sankaran, Kavitha Manivannan, Leonidas Riga

Azure Storage Goals and
Assumptions

● Given
– Multi tenant storage service
– Publicly accessible – untrusted clients
– Myriad of different usage patterns, not just large files

● Provide
– Strong consistency
– Atomic transactions (within partitions)
– Synchronous local replication + asynchronous georeplication
– Some useful high level abstractions for storage

Azure vs. GFS

GFS Azure

Minimum block size 64 MB ~4MB

Unit of replication Block Extent

Mutable blocks? Yes No

Consistency Not consistent Strong

Replication 3 copies of full blocks Erasure coding

Usage Private within google Public

Azure Architecture

● Stream Layer
● Partition Layer
● Front End Layer

Azure Storage Architecture

Azure Storage Stream Layer

● Provides file system abstraction
● Streams ≈ Files

– Made up of pointers to extents

● Extents are made up of lists of blocks
● Blocks are the smallest unit of IO

– Much smaller than in GFS (4MB vs. 64MB)

● Does synchronous intra-stamp replication

Anatomy of a Stream

Stream Layer Architecture

Stream Layer Optimizations

● Spindle anti-starvation
– Custom disk scheduling predicts latencey

● Durability and Journaling
– All writes must be durable on 3 replicas

– Use an SSD and journal appends on every EN

– Appends do not conflict with reads

Partition Layer Responsibilities

● Manages higher level abstractions
– Blob

– Table

– Queue

● Asynchronous Inter-Stamp replication

Partition Layer Architecture

● Partition server serves requests for
RangePartitions
– Only one partition server can serve a given

RangePartition at any point in time

● Partition Manager keeps track of partitioning
Object Tables into RangePartitions

● Paxos Lock Service used for leader election
for Partition Manager

Partition Layer Architecture

Azure Storage Takeaways

● Benefits from good layered design
– Queues, blobs and tables all share underlying

stream layer

● Append only
– Simplifies design of distributed storage

– Comes at cost of GC

● Multitenancy challenges

Azure Storage discussion

● Did they really “beat” CAP theorem?
● What do you think about their consistency

guarantee?
– Would it be useful to have inter-namespace

consistency guarantees?

Comparison

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

