Software-Defined
Networking:

OpenFlow and Frenetic

Mohamed Ismail

Background

Problem:
Programming Networks 1s Hard

Network Stack Pros

- Key to the success of the Internet

email WWW phone...

- Layers and layers of abstraction kSMTP HTTP RTP.. }

TCP UDP...

- Independent innovation at each
layer
- Communication media
« Ethernet standards

- Transport layer protocols { CSMA async sonet_,,‘\

ethernet PPP...

copper fibre radio...

- Follows end-to-end argument

(Source: Shenker, 2011)

Network Stack Cons

- Network switches and routers built
and optimized for internet traffic

email WWW phone...

kSMTP HTTP RTP...}

- Network components and internet
protocols set in stone

- Difficulty to switch from IPv4 to IPv6

TCP UDP...

- Difficult to perform research on

Internet ethernet PPP...

{ CSMA async sonet...‘\

copper fibre radio...

Problem:
Network infrastructure has “ossified”

(Source: Shenker, 2011)

Functions of a switch/router

Packet
In

~Packet
Out

A

Switch/Router

- Recelve a packet and send to appropriate destination

- Prevent a packet from reaching a certain destination

Programming a switch/router

Packet . Packet
In Out

Flow Table *

Switch/Router

\ 4

- Use a limited API to program the switch/router flow table
- Must program each network device separately
- Programming dependent on topology

- Does not scale

Problem: No generalized API for programming scalable networks

Data Plane vs. Control Plane

Data Plane

- Recelve a packet

- Forward packet based on
flow table

- Network stack abstractions
are data plane abstractions

Control Plane

- Update flow table to specify

where packets should go

- Update flow table to specify

where packets should not
go

- No abstractions for

updating the control plane

Programming networks 1s
hard because...

- Network stack 1s an abstraction for the data plane

- Network infrastructure has “ossified” due to the success
of the internet

- Switch and router internals vary by manufacturer and
there 1s no standard API for the control plane

- Without any abstractions for control plane, research and
Innovation in network programming is near impossible

+ Must compute configuration of each device
+ Can only work with given network-level protocol (i.e. IP)

OpenFlow

Authors

- Nick McKeown
+ ‘95 PhD UC Berkeley

* Co-founded Nicira
Networks, ONF

« Faculty at Stanford

- Larry Peterson
+ ‘85 PhD Purdue University
* GENI project chair
+ Faculty at Princeton

I - Jennifer Rexford

* ‘96 PhD Univ. of Mich.

« AT&T Labs ‘96-'05

- Broader Gateway Protocol
« Faculty at Princeton

- Tom Anderson
* ‘91 PhD Univ. of Wash.
- UC Berkeley ‘91-97
+ Faculty at Univ. of Wash.

- Hari Balakrishnan
- ‘98 PhD UC Berkeley
- Faculty at MIT

- Scott Shenker
+ ‘83 PhD Univ. of Chig.
- XEROX Parc

+ Co-founder of Nicira
Networks, ONF

- Faculty at Berkeley

- Guru Parulkar
« ‘87 PhD Univ. of Deliware

* Many network-related
startups

- Executive director of Clean |
Slate Internet Design
Program

* - Jonathan Turner

* Faculty at Washington
University in St. Louis

(Goals

- Run experiments on campus networks

- Software-based approach

- Low cost

Goals and Challenges

- Run experiments on campus networks

* Reluctance by admins to using experimental equipment on
college network

+ Isolation: Control over network without disruptions to
normal traffic

+ What functionality is needed for experiments?

- Software-based approach
+ Software-based solutions have low performance
+ Software-based solutions support low port density

- Low cost
- Take advantage of existing infrastructure
+ Closed platforms from vendors

Take Aways

- OpenFlow allows network devices to decouple the data
plane from the control plane

- Data plane processing done by network device
- Data plane abstraction is the network stack
- Control plane processing done by controller

- New control stack for OpenFlow devices provides
standardized API and abstractions necessary to
mnovate in field of network management

Design
- Separate data plane from control plane

- Data plane
- High performance forwarding

- Control plane
- Flow table is programmable

+ Accessed through controller using OpenFlow Protocol

1 -

Packet Packet

[
»

In Out
Flow Table
Switch/Router

\ 4

OpenFlow API

- Forward packets to given port (or ports)

- Forward packets to controller
- Usage: Can analyze and process packets

- Drop the packet

- Usage: Protect against attacks by removing suspicious
packets

Flow Table Entry

- Packet header to define flow
- Action to be performed

- Statistics

OpenFlow-enabled Network Device

Flow Table comparable to an instruction set

TCP dport Action

port 1

port 2

drop

local

controller

(Source: ONF, 2012)

Isolation

Two Options:

- Add another action to the OpenFlow API

+ Forward packets through normal pipeline

OR
- Define separate VLANSs

« No overlap over production and experimental traffic

Discussion

- What 1s easy to accomplish with the OpenFlow solution?

- What 1s still hard to do with OpenFlow?

Controllers

- Must communicate using OpenFlow protocol

- Individual controllers for multiple switches or single
controller for all switches

- Use with Network OS
- NOX

- Should provide some permissions to prevent mixing of
traffic or unauthorized flow table changes

- Implementation details left unspecified

Control Stack

e.qg. routing, access control

. ControlProgram | -
Global Network View @3

Network OS

Decouple [T SDN
Control Logic

OpenFlow

;\ Hardware Abstraction LayerJ

{ Hardware 1 -

- OpenFlow is only a means to achieve the decoupling
needed for Software-Defined Networking

- Network OS provides common control functionality that
can be used by multiple applications

(Sources: Casado, 2011; Shenker, 2011)

Discussion

- What functionality should the Network OS have?

- What layers or abstractions are missing from the control
stack?

Google B4

- Provides connectivity among Google datacenters
- Use SDN and OpenFlow

- Centralized traffic engineering application
* Resource contention

* Multipath forwarding/tunneling to leverage network capacity
according to application priority

* Dynamically relocate bandwidth

- Many links run at near 100% utilization for extended
periods of time

(Source: Jain, 2013)

Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow

- Partners: - ® |
C SW/ND . U To— sy angagessy s ADVA

@

Alcatel-Lucent

D

ARISTA

..]im':ng: N 2 9 n
>Xbigswitch
BII A OIg RN sRoancom BROCADE
y centec CERAGON) A ciena
il CITRIX cohestverT)/ colt
Cisco . ' ‘

Corianb K\CORI‘:.S‘/.S\ ' ‘I CYAN ForcelO

Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow

- Partners: Y P -

— ETIRl <=
ERICSSON
< i % ioldman
FUJITSU -4 e $ach
GO«)8[6 LiLie)) V2 Huawel
|

o]
3
5
]
2
)

Infoblox 33 T

(intel) (rune infusion” MIXIA

Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow

- Partners: JUﬂIPer m KEMP kt

‘5 Lancope. Level(3) LS °
A -
<LUXOF & MEDIATEK M\ Mellanox
Metas%hn«m & Microsoft ; N i

NEC e NETGEAR @ nerscour

Nokia Siemens

};;:::‘_""‘ . I@NoviFlow NTTDaTta Optelian

Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow

. Partners: ©ORACLE

PLEXKi

' radware

M,

. B
SPIRENT

Jelefond

PROCERA

riverbed

v SUNBAY

Ttellabs’

OVERTURE plc]:\g

The Network is Information e "

= i
SK telecom
3 tail=f

3 Tekelec — TELECQM

Tencent Bl 4 Texas INsSTRUMENTS

Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow

- Partners: . !
thHaces 4 TILERA TORREYPOINT transmode

’ -
Wtelecom ~ wm— = 4vello

5 \/ 1 ‘(/\
O vrson o, Vintela (W

%ﬁant YAHOO! (2710 NE ZTE¢§\£

Take Aways

- OpenFlow allows network devices to decouple the data
plane from the control plane

- Data plane processing done by network device
- Data plane abstraction is the network stack
- Control plane processing done by controller

- New control stack for OpenFlow devices provides
standardized API and abstractions necessary to
mnovate in field of network management

Frenetic

Authors

- Nate Foster - Michael J. Freedman
+ ‘09 PhD Upenn ‘ - PhD NYU

« Faculty at Cornell * Coral CDN

- Faculty at Princeton

- Jennifer Rexford
* ‘96 PhD Univ. of Mich.
- AT&T Labs ‘96-05

- Broader Gateway
Protocol

« Faculty at Princeton

- Rob Harrison
« ‘11 Masters Princeton
- Westpoint

. l\er})ttheW L. Meola - David Walker

* ‘01 PhD Cornell
(Morrisett)

+ Faculty at Princeton

Problems

- OpenFlow i1s a “machine language”
+ Directly reflects underlying hardware
- High level policy may require multiple low-level rules

- Network programs are not i1solated from each other
+ No equivalent of virtual memory space

+ Composition of programs is a manual process and error prone

- Controller does not see all traffic, so some information
may be hidden

+ Delay in programming switches and routers
« Must take care of additional corner cases

Hard to effectively program OpenFlow tables using NOX

Take Aways

- OpenFlow 1s the “machine language” of network
programming
- Difficult to program correctly and efficiently
- Not enough layers of abstraction for programmers

- Frenetic addresses issues with composibility, low-level
interaction, and providing a unified view through the
Frenetic run-time system and Frenetic programming
language

Approach

- Add a layer of abstraction

- Run-time system converts
between high-level program
to correct low-level network
rules

- Frenetic programming
language based on
functional reactive
programming (FRP)

+ “See every packet”
abstraction

+ Composition
- Rich pattern algebra

., - Frenetic Program

/

subscribe T Packets

register L | Seconds

Frenetic Run-Time System

instell packet_in
wrrinstaldl Y -

NOX

OpenFlow == ’ r—"
Swiches NS NN .

(Source: Foster, 2010)

Example w/o Frenetic

def repeater(switch):

pl ={IN_PORT:1}

p2 = {IN_PORT:2}

al = [output(2)]

a2 = [output(1)]

imnstall(switch, p1, al, DEFAULT)
mstall(switch, p2, a2, DEFAULT)

def monitor(switch):

p = {IN_PORT:2,TP_SRC:80}
install(switch, p, [|, DEFAULT)
query_stats(switch, p)

def repeater_monitor(switch):

pl ={IN_PORT:1}

p2 = {IN_PORT:2}

p2web = {IN_PORT:2,TP_SRC:80}
al = [output(2)]

a2 = [output(1)]

mstall(switch, p1, al, DEFAULT)
mstall(switch, p2, a2, DEFAULT)
mstall(switch, p2web, a2, HIGH)
query_stats(switch, p2web)

Example w/ Frenetic

def monitor_sf():
return(Filter(inport_p(2) & srcport_p(80)) |o]|
GroupByTime(30) |o|
SumSizes())

rules = [Rule(inport_p(1), [output(2)]),
Rule(inport_p(2), [output(1)])]

def repeater_monitor():
register_static(rules)
stats = Apply(Packets(), monitor_sf())

print_stream(stats)

Discussion

- Are there any issues with OpenFlow that Frenetic could
not address?

- How does Frenetic reinforce the idea that innovation in
this field will come through abstractions and layering?

- Does Frenetic or OpenFlow help address the issue of
“ossification” of the internet?

Take Aways

- OpenFlow 1s the “machine language” of network
programming
- Difficult to program correctly and efficiently
- Not enough layers of abstraction for programmers

- Frenetic addresses issues with composibility, low-level
interaction, and providing a unified view through the
Frenetic run-time system and Frenetic programming
language

References

. 1(\)/IloenFlow: Enabling innovation in campus networks. Nick
cKeown et al. (2008-04). ACM Communications Review.

- Frenetic: A High-Level Lan augL for OpenFlow Networks. Nate
Foster, Rob Harrison, Matthew L. Meola, Michael J. Freedman,
Jennifer Rexford, and David Walker. In ACM Workshop on
Pro%"ammable Routers for Extensible Services of Tomorrow
(PRESTO), Philadelphia, PA, November 2010.

- Open Network Foundation.

- Origins and Evolution of OpenFlow/SDN. Martin Casado. In Open
Networking Summit, Stanford, CA, October 2011.

- The Future of Networking, and the Past of Protocols. Scott
Shenker. In Open Networking Summit, Stanford, CA, October 2011.

- B4: Experience with a Globally-Deployed Software Defined WAN.
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jonathan Zolla, Urs Hoélzle, Stephen Stuart and
Amin Vahdat. In SIGCOMM 2013.

http://opennetworking.org/

