
Software-Defined
Networking:
OpenFlow and Frenetic
Mohamed Ismail

Background

Problem:
Programming Networks is Hard

3/39

Network Stack Pros
• Key to the success of the Internet

• Layers and layers of abstraction

• Independent innovation at each
layer

 Communication media

 Ethernet standards

 Transport layer protocols

• Follows end-to-end argument

(Source: Shenker, 2011)
4/39

Network Stack Cons
• Network switches and routers built

and optimized for internet traffic

• Network components and internet
protocols set in stone

 Difficulty to switch from IPv4 to IPv6

• Difficult to perform research on
Internet

(Source: Shenker, 2011)

Problem:

Network infrastructure has “ossified”

5/39

Functions of a switch/router

• Receive a packet and send to appropriate destination

• Prevent a packet from reaching a certain destination

Packet

In

Packet

Out

Switch/Router

6/39

Programming a switch/router

• Use a limited API to program the switch/router flow table

• Must program each network device separately

• Programming dependent on topology

• Does not scale

Packet

In

Packet

Out

Switch/Router

Flow Table

Problem: No generalized API for programming scalable networks 7/39

Data Plane vs. Control Plane

Data Plane

• Receive a packet

• Forward packet based on
flow table

• Network stack abstractions
are data plane abstractions

Control Plane

• Update flow table to specify
where packets should go

• Update flow table to specify
where packets should not
go

• No abstractions for
updating the control plane

8/39

Programming networks is
hard because…
• Network stack is an abstraction for the data plane

• Network infrastructure has “ossified” due to the success
of the internet

• Switch and router internals vary by manufacturer and
there is no standard API for the control plane

• Without any abstractions for control plane, research and
innovation in network programming is near impossible

 Must compute configuration of each device

 Can only work with given network-level protocol (i.e. IP)

9/39

OpenFlow

Authors
 • Nick McKeown

 ‘95 PhD UC Berkeley

 Co-founded Nicira
Networks, ONF

 Faculty at Stanford

• Tom Anderson
 ‘91 PhD Univ. of Wash.

 UC Berkeley ‘91-’97

 Faculty at Univ. of Wash.

• Hari Balakrishnan
 ‘98 PhD UC Berkeley

 Faculty at MIT

• Guru Parulkar
 ‘87 PhD Univ. of Deliware

 Many network-related
startups

 Executive director of Clean
Slate Internet Design
Program

• Larry Peterson
 ‘85 PhD Purdue University

 GENI project chair

 Faculty at Princeton

• Jennifer Rexford
 ‘96 PhD Univ. of Mich.

 AT&T Labs ‘96-’05

 Broader Gateway Protocol

 Faculty at Princeton

• Scott Shenker
 ‘83 PhD Univ. of Chig.

 XEROX Parc

 Co-founder of Nicira
Networks, ONF

 Faculty at Berkeley

• Jonathan Turner
 Faculty at Washington

University in St. Louis

Goals
• Run experiments on campus networks

 Reluctance to using experimental equipment on college
network

 Isolation: Control over network without disruptions to
normal traffic

 What functionality is needed for experiments?

• Software-based approach

 Low performance

 Low port density

• Low cost

 Take advantage of existing infrastructure

 Closed platforms from vendors

12/39

Goals and Challenges
• Run experiments on campus networks

 Reluctance by admins to using experimental equipment on
college network

 Isolation: Control over network without disruptions to
normal traffic

 What functionality is needed for experiments?

• Software-based approach

 Software-based solutions have low performance

 Software-based solutions support low port density

• Low cost

 Take advantage of existing infrastructure

 Closed platforms from vendors

13/39

Take Aways
• OpenFlow allows network devices to decouple the data

plane from the control plane

• Data plane processing done by network device

• Data plane abstraction is the network stack

• Control plane processing done by controller

• New control stack for OpenFlow devices provides
standardized API and abstractions necessary to
innovate in field of network management

14/39

Design
• Separate data plane from control plane

• Data plane

 High performance forwarding

• Control plane

 Flow table is programmable

 Accessed through controller using OpenFlow Protocol

Packet

In

Packet

Out

Switch/Router

Flow Table

OpenFlow

15/39

OpenFlow API
• Forward packets to given port (or ports)

• Forward packets to controller

 Usage: Can analyze and process packets

• Drop the packet

 Usage: Protect against attacks by removing suspicious
packets

16/39

Flow Table Entry
• Packet header to define flow

• Action to be performed

• Statistics

(Source: ONF, 2012)
17/39

Isolation
Two Options:

• Add another action to the OpenFlow API

 Forward packets through normal pipeline

OR

• Define separate VLANs

 No overlap over production and experimental traffic

18/39

Discussion
• What is easy to accomplish with the OpenFlow solution?

• What is still hard to do with OpenFlow?

19/39

Controllers
• Must communicate using OpenFlow protocol

• Individual controllers for multiple switches or single
controller for all switches

• Use with Network OS

 NOX

• Should provide some permissions to prevent mixing of
traffic or unauthorized flow table changes

• Implementation details left unspecified

20/39

Control Stack

• OpenFlow is only a means to achieve the decoupling
needed for Software-Defined Networking

• Network OS provides common control functionality that
can be used by multiple applications

(Sources: Casado, 2011; Shenker, 2011)
21/39

Discussion
• What functionality should the Network OS have?

• What layers or abstractions are missing from the control
stack?

22/39

Google B4
• Provides connectivity among Google datacenters

• Use SDN and OpenFlow

• Centralized traffic engineering application

 Resource contention

 Multipath forwarding/tunneling to leverage network capacity
according to application priority

 Dynamically relocate bandwidth

• Many links run at near 100% utilization for extended
periods of time

(Source: Jain, 2013)
23/39

Open Network Foundation
• Promote adoption of Sotware-Defined Networking

through open standards such as OpenFlow

• Partners:

24/39

Open Network Foundation
• Promote adoption of Sotware-Defined Networking

through open standards such as OpenFlow

• Partners:

25/39

Open Network Foundation
• Promote adoption of Sotware-Defined Networking

through open standards such as OpenFlow

• Partners:

26/39

Open Network Foundation
• Promote adoption of Sotware-Defined Networking

through open standards such as OpenFlow

• Partners:

27/39

Open Network Foundation
• Promote adoption of Sotware-Defined Networking

through open standards such as OpenFlow

• Partners:

28/39

Take Aways
• OpenFlow allows network devices to decouple the data

plane from the control plane

• Data plane processing done by network device

• Data plane abstraction is the network stack

• Control plane processing done by controller

• New control stack for OpenFlow devices provides
standardized API and abstractions necessary to
innovate in field of network management

29/39

Frenetic

Authors
• Nate Foster

 ‘09 PhD Upenn

 Faculty at Cornell

• Rob Harrison
 ‘11 Masters Princeton

 Westpoint

• Matthew L. Meola
 ?

• Michael J. Freedman
 PhD NYU

 CoralCDN

 Faculty at Princeton

• Jennifer Rexford
 ‘96 PhD Univ. of Mich.

 AT&T Labs ‘96-’05

 Broader Gateway
Protocol

 Faculty at Princeton

• David Walker
 ‘01 PhD Cornell

(Morrisett)

 Faculty at Princeton

Problems
• OpenFlow is a “machine language”

 Directly reflects underlying hardware

 High level policy may require multiple low-level rules

• Network programs are not isolated from each other

 No equivalent of virtual memory space

 Composition of programs is a manual process and error prone

• Controller does not see all traffic, so some information
may be hidden

 Delay in programming switches and routers

 Must take care of additional corner cases

Hard to effectively program OpenFlow tables using NOX

32/39

Take Aways
• OpenFlow is the “machine language” of network

programming

 Difficult to program correctly and efficiently

 Not enough layers of abstraction for programmers

• Frenetic addresses issues with composibility, low-level
interaction, and providing a unified view through the
Frenetic run-time system and Frenetic programming
language

33/39

Approach
• Add a layer of abstraction

 Run-time system converts
between high-level program
to correct low-level network
rules

• Frenetic programming
language based on
functional reactive
programming (FRP)

 “See every packet”
abstraction

 Composition

 Rich pattern algebra

(Source: Foster, 2010)
34/39

Example w/o Frenetic
def repeater(switch):

p1 = {IN_PORT:1}

p2 = {IN_PORT:2}

a1 = [output(2)]

a2 = [output(1)]

install(switch, p1, a1, DEFAULT)

install(switch, p2, a2, DEFAULT)

def monitor(switch):

p = {IN_PORT:2,TP_SRC:80}

install(switch, p, [], DEFAULT)

query_stats(switch, p)

def repeater_monitor(switch):

p1 = {IN_PORT:1}

p2 = {IN_PORT:2}

p2web = {IN_PORT:2,TP_SRC:80}

a1 = [output(2)]

a2 = [output(1)]

install(switch, p1, a1, DEFAULT)

install(switch, p2, a2, DEFAULT)

install(switch, p2web, a2, HIGH)

query_stats(switch, p2web)

35/39

Example w/ Frenetic
def monitor_sf():

return(Filter(inport_p(2) & srcport_p(80)) |o|

GroupByTime(30) |o|

SumSizes())

rules = [Rule(inport_p(1), [output(2)]),

 Rule(inport_p(2), [output(1)])]

def repeater_monitor():

register_static(rules)

stats = Apply(Packets(), monitor_sf())

print_stream(stats)

36/39

Discussion
• Are there any issues with OpenFlow that Frenetic could

not address?

• How does Frenetic reinforce the idea that innovation in
this field will come through abstractions and layering?

• Does Frenetic or OpenFlow help address the issue of
“ossification” of the internet?

37/39

Take Aways
• OpenFlow is the “machine language” of network

programming

 Difficult to program correctly and efficiently

 Not enough layers of abstraction for programmers

• Frenetic addresses issues with composibility, low-level
interaction, and providing a unified view through the
Frenetic run-time system and Frenetic programming
language

38/39

References
• OpenFlow: Enabling innovation in campus networks. Nick

McKeown et al. (2008-04). ACM Communications Review.

• Frenetic: A High-Level Langauge for OpenFlow Networks. Nate
Foster, Rob Harrison, Matthew L. Meola, Michael J. Freedman,
Jennifer Rexford, and David Walker. In ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow
(PRESTO), Philadelphia, PA, November 2010.

• Open Network Foundation. http://opennetworking.org

• Origins and Evolution of OpenFlow/SDN. Martin Casado. In Open
Networking Summit, Stanford, CA, October 2011.

• The Future of Networking, and the Past of Protocols. Scott
Shenker. In Open Networking Summit, Stanford, CA, October 2011.

• B4: Experience with a Globally-Deployed Software Defined WAN.
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart and
Amin Vahdat. In SIGCOMM 2013.

39/39

http://opennetworking.org/

