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Background 



Problem: 
Programming Networks is Hard 
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Network Stack Pros 
• Key to the success of the Internet 

 

• Layers and layers of abstraction 

 

• Independent innovation at each 
layer 

 Communication media 

 Ethernet standards 

 Transport layer protocols 

 

• Follows end-to-end argument 

(Source: Shenker, 2011) 
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Network Stack Cons 
• Network switches and routers built 

and optimized for internet traffic 

 

• Network components and internet 
protocols set in stone 

 Difficulty to switch from IPv4 to IPv6 

 

• Difficult to perform research on 
Internet 

(Source: Shenker, 2011) 

Problem: 

Network infrastructure has “ossified” 
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Functions of a switch/router 

• Receive a packet and send to appropriate destination 

• Prevent a packet from reaching a certain destination 
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Programming a switch/router 

• Use a limited API to program the switch/router flow table 

• Must program each network device separately 

• Programming dependent on topology 

• Does not scale 
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Data Plane vs. Control Plane 

Data Plane 

• Receive a packet 

• Forward packet based on 
flow table 

• Network stack abstractions 
are data plane abstractions 

 

Control Plane 

• Update flow table to specify 
where packets should go 

• Update flow table to specify 
where packets should not 
go 

• No abstractions for 
updating the control plane 
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Programming networks is 
hard because… 
• Network stack is an abstraction for the data plane 

 

• Network infrastructure has “ossified” due to the success 
of the internet 

 

• Switch and router internals vary by manufacturer and 
there is no standard API for the control plane 

 

• Without any abstractions for control plane, research and 
innovation in network programming is near impossible 

 Must compute configuration of each device 

 Can only work with given network-level protocol (i.e. IP) 
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OpenFlow 
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 • Nick McKeown 

 ‘95 PhD UC Berkeley 

 Co-founded Nicira 
Networks, ONF 

 Faculty at Stanford 
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• Hari Balakrishnan 
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 Faculty at MIT 

• Guru Parulkar 
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• Larry Peterson 
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 Faculty at Princeton 

• Jennifer Rexford 
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 AT&T Labs  ‘96-’05 

 Broader Gateway Protocol 

 Faculty at Princeton 
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Goals 
• Run experiments on campus networks 

 Reluctance to using experimental equipment on college 
network 

 Isolation: Control over network without disruptions to 
normal traffic 

 What functionality is needed for experiments? 

• Software-based approach 

 Low performance 

 Low port density 

• Low cost 

 Take advantage of existing infrastructure 

 Closed platforms from vendors 
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Goals and Challenges 
• Run experiments on campus networks 

 Reluctance by admins to using experimental equipment on 
college network 

 Isolation: Control over network without disruptions to 
normal traffic 

 What functionality is needed for experiments? 

• Software-based approach 

 Software-based solutions have low performance 

 Software-based solutions support low port density 

• Low cost 

 Take advantage of existing infrastructure 

 Closed platforms from vendors 
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Take Aways 
• OpenFlow allows network devices to decouple the data 

plane from the control plane 

• Data plane processing done by network device 

• Data plane abstraction is the network stack 

• Control plane processing done by controller 

• New control stack for OpenFlow devices provides 
standardized API and abstractions necessary to 
innovate in field of network management 
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Design 
• Separate data plane from control plane 

• Data plane 

 High performance forwarding 

• Control plane 

 Flow table is programmable 

 Accessed through controller using OpenFlow Protocol 
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OpenFlow API 
• Forward packets to given port (or ports) 

• Forward packets to controller 

 Usage: Can analyze and process packets 

• Drop the packet 

 Usage: Protect against attacks by removing suspicious 
packets 
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Flow Table Entry 
• Packet header to define flow 

• Action to be performed 

• Statistics 

 

(Source: ONF, 2012) 
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Isolation 
Two Options: 

• Add another action to the OpenFlow API 

 Forward packets through normal pipeline 

OR 

• Define separate VLANs 

 No overlap over production and experimental traffic 
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Discussion 
• What is easy to accomplish with the OpenFlow solution? 

 

• What is still hard to do with OpenFlow? 
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Controllers 
• Must communicate using OpenFlow protocol 

• Individual controllers for multiple switches or single 
controller for all switches 

• Use with Network OS 

 NOX 

• Should provide some permissions to prevent mixing of 
traffic or unauthorized flow table changes 

• Implementation details left unspecified 
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Control Stack 
 

• OpenFlow is only a means to achieve the decoupling 
needed for Software-Defined Networking 

• Network OS provides common control functionality that 
can be used by multiple applications 

(Sources: Casado, 2011; Shenker, 2011) 
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Discussion 
• What functionality should the Network OS have? 

 

• What layers or abstractions are missing from the control 
stack? 
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Google B4 
• Provides connectivity among Google datacenters 

• Use SDN and OpenFlow 

• Centralized traffic engineering application 

 Resource contention 

 Multipath forwarding/tunneling to leverage network capacity 
according to application priority 

 Dynamically relocate bandwidth 

• Many links run at near 100% utilization for extended 
periods of time 

 

 

 

(Source: Jain, 2013) 
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Open Network Foundation 
• Promote adoption of Sotware-Defined Networking 

through open standards such as OpenFlow 

• Partners: 

24/39 



Open Network Foundation 
• Promote adoption of Sotware-Defined Networking 

through open standards such as OpenFlow 

• Partners: 

25/39 



Open Network Foundation 
• Promote adoption of Sotware-Defined Networking 

through open standards such as OpenFlow 

• Partners: 

26/39 



Open Network Foundation 
• Promote adoption of Sotware-Defined Networking 

through open standards such as OpenFlow 

• Partners: 

27/39 



Open Network Foundation 
• Promote adoption of Sotware-Defined Networking 

through open standards such as OpenFlow 

• Partners: 

28/39 



Take Aways 
• OpenFlow allows network devices to decouple the data 

plane from the control plane 

• Data plane processing done by network device 

• Data plane abstraction is the network stack 

• Control plane processing done by controller 

• New control stack for OpenFlow devices provides 
standardized API and abstractions necessary to 
innovate in field of network management 
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Frenetic 
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Problems 
• OpenFlow is a “machine language” 

 Directly reflects underlying hardware 

 High level policy may require multiple low-level rules 

• Network programs are not isolated from each other 

 No equivalent of virtual memory space 

 Composition of programs is a manual process and error prone 

• Controller does not see all traffic, so some information 
may be hidden 

 Delay in programming switches and routers 

 Must take care of additional corner cases 

Hard to effectively program OpenFlow tables using NOX 
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Take Aways 
• OpenFlow is the “machine language” of network 

programming 

 Difficult to program correctly and efficiently 

 Not enough layers of abstraction for programmers 

 

• Frenetic addresses issues with composibility, low-level 
interaction, and providing a unified view through the 
Frenetic run-time system and Frenetic programming 
language 
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Approach 
• Add a layer of abstraction 

 Run-time system converts 
between high-level program 
to correct low-level network 
rules 

• Frenetic programming 
language based on 
functional reactive 
programming (FRP) 

 “See every packet” 
abstraction 

 Composition 

 Rich pattern algebra 

 

(Source: Foster, 2010) 
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Example w/o Frenetic 
def repeater(switch): 

p1 = {IN_PORT:1} 

p2 = {IN_PORT:2} 

a1 = [output(2)] 

a2 = [output(1)] 

install(switch, p1, a1, DEFAULT) 

install(switch, p2, a2, DEFAULT) 

 

def monitor(switch): 

p = {IN_PORT:2,TP_SRC:80} 

install(switch, p, [], DEFAULT) 

query_stats(switch, p) 

def repeater_monitor(switch): 

p1 = {IN_PORT:1} 

p2 = {IN_PORT:2} 

p2web = {IN_PORT:2,TP_SRC:80} 

a1 = [output(2)] 

a2 = [output(1)] 

install(switch, p1, a1, DEFAULT) 

install(switch, p2, a2, DEFAULT) 

install(switch, p2web, a2, HIGH) 

query_stats(switch, p2web) 
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Example w/ Frenetic 
def monitor_sf(): 

return(Filter(inport_p(2) & srcport_p(80)) |o| 

GroupByTime(30) |o| 

SumSizes()) 

 

rules = [Rule(inport_p(1), [output(2)]),  

 Rule(inport_p(2), [output(1)])] 

def repeater_monitor(): 

register_static(rules) 

stats = Apply(Packets(), monitor_sf()) 

print_stream(stats) 
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Discussion 
• Are there any issues with OpenFlow that Frenetic could 

not address? 

• How does Frenetic reinforce the idea that innovation in 
this field will come through abstractions and layering? 

• Does Frenetic or OpenFlow help address the issue of 
“ossification” of the internet? 
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Take Aways 
• OpenFlow is the “machine language” of network 

programming 

 Difficult to program correctly and efficiently 

 Not enough layers of abstraction for programmers 

 

• Frenetic addresses issues with composibility, low-level 
interaction, and providing a unified view through the 
Frenetic run-time system and Frenetic programming 
language 

38/39 



References 
• OpenFlow: Enabling innovation in campus networks. Nick 

McKeown et al. (2008-04).  ACM Communications Review. 

• Frenetic: A High-Level Langauge for OpenFlow Networks. Nate 
Foster, Rob Harrison, Matthew L. Meola, Michael J. Freedman, 
Jennifer Rexford, and David Walker.  In ACM Workshop on 
Programmable Routers for Extensible Services of Tomorrow 
(PRESTO), Philadelphia, PA, November 2010. 

• Open Network Foundation. http://opennetworking.org 

• Origins and Evolution of OpenFlow/SDN. Martin Casado. In Open 
Networking Summit, Stanford, CA, October 2011. 

• The Future of Networking, and the Past of Protocols. Scott 
Shenker. In Open Networking Summit, Stanford, CA, October 2011. 

• B4: Experience with a Globally-Deployed Software Defined WAN. 
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon 
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan 
Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart and 
Amin Vahdat. In SIGCOMM 2013. 

39/39 

http://opennetworking.org/

