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Background




Problem:
Programming Networks 1s Hard




Network Stack Pros

- Key to the success of the Internet

email WWW phone...

- Layers and layers of abstraction kSMTP HTTP RTP.. }

TCP UDP...

- Independent innovation at each
layer
- Communication media
« Ethernet standards

- Transport layer protocols { CSMA async sonet_,,‘\

ethernet PPP...

copper fibre radio...

- Follows end-to-end argument

(Source: Shenker, 2011)



Network Stack Cons

- Network switches and routers built
and optimized for internet traffic

email WWW phone...

kSMTP HTTP RTP...}

- Network components and internet
protocols set in stone

- Difficulty to switch from IPv4 to IPv6

TCP UDP...

- Difficult to perform research on

Internet ethernet PPP...

{ CSMA async sonet...‘\

copper fibre radio...

Problem:
Network infrastructure has “ossified”

(Source: Shenker, 2011)



Functions of a switch/router

Packet
In

~Packet
Out

A

Switch/Router

- Recelve a packet and send to appropriate destination

- Prevent a packet from reaching a certain destination




Programming a switch/router

Packet . Packet
In Out

Flow Table \*

Switch/Router

\ 4

- Use a limited API to program the switch/router flow table
- Must program each network device separately
- Programming dependent on topology

- Does not scale

Problem: No generalized API for programming scalable networks




Data Plane vs. Control Plane

Data Plane

- Recelve a packet

- Forward packet based on
flow table

- Network stack abstractions
are data plane abstractions

Control Plane

- Update flow table to specify

where packets should go

- Update flow table to specify

where packets should not
go

- No abstractions for

updating the control plane




Programming networks 1s
hard because...

- Network stack 1s an abstraction for the data plane

- Network infrastructure has “ossified” due to the success
of the internet

- Switch and router internals vary by manufacturer and
there 1s no standard API for the control plane

- Without any abstractions for control plane, research and
Innovation in network programming is near impossible

+ Must compute configuration of each device
+ Can only work with given network-level protocol (i.e. IP)




OpenFlow
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(Goals

- Run experiments on campus networks

- Software-based approach

- Low cost




Goals and Challenges

- Run experiments on campus networks

* Reluctance by admins to using experimental equipment on
college network

+ Isolation: Control over network without disruptions to
normal traffic

+ What functionality is needed for experiments?

- Software-based approach
+ Software-based solutions have low performance
+ Software-based solutions support low port density

- Low cost
- Take advantage of existing infrastructure
+ Closed platforms from vendors




Take Aways

- OpenFlow allows network devices to decouple the data
plane from the control plane

- Data plane processing done by network device
- Data plane abstraction is the network stack
- Control plane processing done by controller

- New control stack for OpenFlow devices provides
standardized API and abstractions necessary to
mnovate in field of network management




Design
- Separate data plane from control plane

- Data plane
- High performance forwarding

- Control plane
- Flow table is programmable

+ Accessed through controller using OpenFlow Protocol

1 -

Packet Packet

[
»

In Out
Flow Table
Switch/Router

\ 4




OpenFlow API

- Forward packets to given port (or ports)

- Forward packets to controller
- Usage: Can analyze and process packets

- Drop the packet

- Usage: Protect against attacks by removing suspicious
packets




Flow Table Entry

- Packet header to define flow
- Action to be performed

- Statistics

OpenFlow-enabled Network Device

Flow Table comparable to an instruction set

TCP dport Action

port 1

port 2

drop

local

controller

(Source: ONF, 2012)



Isolation

Two Options:

- Add another action to the OpenFlow API

+ Forward packets through normal pipeline

OR
- Define separate VLANSs

« No overlap over production and experimental traffic




Discussion

- What 1s easy to accomplish with the OpenFlow solution?

- What 1s still hard to do with OpenFlow?




Controllers

- Must communicate using OpenFlow protocol

- Individual controllers for multiple switches or single
controller for all switches

- Use with Network OS
- NOX

- Should provide some permissions to prevent mixing of
traffic or unauthorized flow table changes

- Implementation details left unspecified




Control Stack

e.qg. routing, access control

. ControlProgram | -
Global Network View @3

Network OS

Decouple [T SDN
Control Logic

OpenFlow

;\ Hardware Abstraction LayerJ

{ Hardware 1 -

- OpenFlow is only a means to achieve the decoupling
needed for Software-Defined Networking

- Network OS provides common control functionality that
can be used by multiple applications

(Sources: Casado, 2011; Shenker, 2011)



Discussion

- What functionality should the Network OS have?

- What layers or abstractions are missing from the control
stack?




Google B4

- Provides connectivity among Google datacenters
- Use SDN and OpenFlow

- Centralized traffic engineering application
* Resource contention

* Multipath forwarding/tunneling to leverage network capacity
according to application priority

* Dynamically relocate bandwidth

- Many links run at near 100% utilization for extended
periods of time

(Source: Jain, 2013)



Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow
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Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow
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Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow
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Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow
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Open Network Foundation

- Promote adoption of Sotware-Defined Networking
through open standards such as OpenFlow
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Take Aways

- OpenFlow allows network devices to decouple the data
plane from the control plane

- Data plane processing done by network device
- Data plane abstraction is the network stack
- Control plane processing done by controller

- New control stack for OpenFlow devices provides
standardized API and abstractions necessary to
mnovate in field of network management




Frenetic
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Problems

- OpenFlow i1s a “machine language”
+ Directly reflects underlying hardware
- High level policy may require multiple low-level rules

- Network programs are not i1solated from each other
+ No equivalent of virtual memory space

+ Composition of programs is a manual process and error prone

- Controller does not see all traffic, so some information
may be hidden

+ Delay in programming switches and routers
« Must take care of additional corner cases

Hard to effectively program OpenFlow tables using NOX




Take Aways

- OpenFlow 1s the “machine language” of network
programming
- Difficult to program correctly and efficiently
- Not enough layers of abstraction for programmers

- Frenetic addresses issues with composibility, low-level
interaction, and providing a unified view through the
Frenetic run-time system and Frenetic programming
language




Approach

- Add a layer of abstraction

- Run-time system converts
between high-level program
to correct low-level network
rules

- Frenetic programming
language based on
functional reactive
programming (FRP)

+ “See every packet”
abstraction

+ Composition
- Rich pattern algebra

., - Frenetic Program

/

subscribe T Packets

register L | Seconds

Frenetic Run-Time System

instell packet_in
wrrinstaldl Y -

NOX

OpenFlow == ’ r—"
Swiches NS NN .

(Source: Foster, 2010)




Example w/o Frenetic

def repeater(switch):

pl ={IN_PORT:1}

p2 = {IN_PORT:2}

al = [output(2)]

a2 = [output(1)]

imnstall(switch, p1, al, DEFAULT)
mstall(switch, p2, a2, DEFAULT)

def monitor(switch):

p = {IN_PORT:2,TP_SRC:80}
install(switch, p, [|, DEFAULT)
query_stats(switch, p)

def repeater_monitor(switch):

pl ={IN_PORT:1}

p2 = {IN_PORT:2}

p2web = {IN_PORT:2,TP_SRC:80}
al = [output(2)]

a2 = [output(1)]

mstall(switch, p1, al, DEFAULT)
mstall(switch, p2, a2, DEFAULT)
mstall(switch, p2web, a2, HIGH)
query_stats(switch, p2web)




Example w/ Frenetic

def monitor_sf():
return(Filter(inport_p(2) & srcport_p(80)) |o]|
GroupByTime(30) |o|
SumSizes())

rules = [Rule(inport_p(1), [output(2)]),
Rule(inport_p(2), [output(1)])]

def repeater_monitor():
register_static(rules)
stats = Apply(Packets(), monitor_sf())

print_stream(stats)




Discussion

- Are there any issues with OpenFlow that Frenetic could
not address?

- How does Frenetic reinforce the idea that innovation in
this field will come through abstractions and layering?

- Does Frenetic or OpenFlow help address the issue of
“ossification” of the internet?




Take Aways

- OpenFlow 1s the “machine language” of network
programming
- Difficult to program correctly and efficiently
- Not enough layers of abstraction for programmers

- Frenetic addresses issues with composibility, low-level
interaction, and providing a unified view through the
Frenetic run-time system and Frenetic programming
language
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