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Brief History Overview of Parallel Computing

» 1962: Burroughs Corporation introduces D825 (4 CPUs connected to
16 memory modules)

» 1967: Amdahl's Law: predicting the maximum speedup when new
CPUs are added

» 1969: Multics introduced (8 CPUs)
» 1970: C.mmp multiprocessor (16 CPUs)

» 1976: ILLIAC IV (up to 256 CPUs): "perhaps the most infamous of
Supercomputers”

Source: en.wikipedia.org
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Networked Parallel Computers

v

Tightly coupled multiprocessor machines

v

Task parallelism
» Communication should be responsive

» Communication should not have high overhead
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Networking Problems Faced by Parallel Computers

v

High-latency

v

Throughput optimization based on big messages

Disconnect between software and hardware design

v

v

Synchronous messaging
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Active Messages: a Mechanism for Integrated
Communication and Computation

In Proceedings of the 19th Annual International Symposium on Computer
Architecture, 1992

g

Thorsten von Eicken David E. Culler ~ Seth Copen Goldstein

\
|
l |

Klaus Erik Schauser

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 6 /30



Outline

v

Motivation for Active Messages

v

Solution — how do they achieve the goals

v

Implementation

v

Evaluation of Active Messages

v

Perspective
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Active Messages: Motivation

» CPU design based on raw performance, not so much on networking
» Synchronous messaging is slow due to high latency

» Communication and computation should be combined
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Active Messages: Solution

» Take advantage of fast DMA and specific network interface
capabilities

» Use asynchronous messaging paradigm; latency becomes less of a
problem

» Implement queues to buffer data so that it is ready for computation
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Asynchronous Messaging
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Figure 1: Three-phase protocol for synchronous send and receive. Note that the communication latency is
at best three network trips and that both send and receive block for at least one network round-trip each.
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Figure 2: Communication steps required for neighboring processors in a ring to exchange data using
asynchronous send and receive. Data can be exchanged while computing by executing all sends before the
computation phase and all receives afterwards. Note that bufferspace for the entire volume of communication
‘must be allocated for the duration of the computation phase!

Source: same paper



Asynchronous Messaging

a) GET cost model ¥
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Figure 6: Performance model for GET. Compose accounts for the time to set-up the request. Xmit is the time
to inject the message into the network and hops is the time taken for the network hops. Service includes for

copying the data into the reply buffer and handle for the time to copy the data into the destination memory
block.

Source: same paper



Utilizes resources (almost) as predicted
% utilization
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Figure 5: Performance of Split-C matrix multiply on 128 processors compared to predicted performance
. . l Source: same paper
using the model shown in Figure 6.
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Active Messages: Conclusion

» Case for hardware to better support networking
» Good basis for parallel computing (Split-C)

» Design is specific to parallel computing
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Active Messages: Perspective

» What happened to Active Messages?
» Where is parallel computing? Niche computing?

» Change in hardware? We stopped increasing CPU frequency
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More Than Low Latency

v

Low latency communication is essential in parallel computing

v

What happens with multiple processes?
What about isolation?
Do you let the kernel handle isolation?

v

v
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Networking Through Kernel

» Kernel abstracts networking device
» Processes must use the underlying protocols

» Kernel responsible for management and isolation (policy)
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User Space Networking

» Remove kernel from critical path
» Reduce the latency between network interface and process

» Program can decide protocols
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U-Net: A User-Level Network Interface for Parallel and
Distributed Computing

15th SOSP, December 1995.
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Outline

v

Motivation/Goals for U-Net
Design

v

\4

Implementation
Evaluation of U-Net

v

v

Perspective
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U-Net Goals

» Low latency and high bandwidth with small messages
» Application access to underlying protocols

» Practical integration with existing systems

Solution: virtual network interfaces (endpoints)
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Better utilization of available bandwidth
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Figure 3: U-Net round-trip times as a function of message
size. The Raw U-Net graph shows the round-trip times for a
simple ping-pong benchmark using the U-Net interface
directly. The inset graph highlights the performance on small
messages. The UAM line measures the performance of U-Net
Active Messages using reliable single-cell requests and
replies whereas UAM xfer uses reliable block transfers of arbi-
trary size.
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Figure 4: U-Net bandwidth as a function of message size. The
AAL-5 Iimit curve represents the theoretical peak bandwidth
of the fiber (the sawtooths are caused by the quantization into
48-byte cells). The Raw U-Net measurement shows the band-
width achievable using the U-Net interface directly, while
UAM storelget demonstrate the performance of reliable U-Net
Active Messages block transfers.

Source: same paper



Supports other protocols
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Performs well compared to other systems (*run on different h/w)
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Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication  breakdown is  shown for three
applications.
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U-Net: Conclusion

» Reasonable performance
> Is there process isolation?

» TCP/IP implementation should facilitate integration with other
networks

» Adoption? Applicability in existing systems?
» Approach reminiscent of a microkernel’s: move networking to
userspace

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 26 / 30



U-Net: Perspective

> |s there sufficient granularity of network resources?

» Do we have user-level interfaces today?
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What happened to U-Net?

v

Virtual Interface Network (1997) — userspace zero-copy networking

v

RDMA — Remote DMA: zero-copy over network done by network card

v

Myrinet (1995): two fibre optic cables, packet switching, lower
protocol overhead than Ethernet, low latency

Infiniband (1999): high speed I/O (storage)
Virtualization: hypervisor kernel-bypass

v

v

Source: en.wikipedia.org
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Active Messages and U-Net: Comparison

v

Both are in parallel computing environment
However, U-Net also focused on TCP and UDP

» Do we use this today?

v

v

What happened to parallel computing
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Perspective

v

Less tightly-coupled processing today
Active Networks in mid 90s

Disliked for disobeying end-to-end argument
15 years later: SDN

Is parallel computing still important today?

v

v

v

v
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