An O/S perspective on networks: Active Messages and
U-Net

Theo Jepsen

Cornell University

17 October 2013

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 1/30



Brief History Overview of Parallel Computing

» 1962: Burroughs Corporation introduces D825 (4 CPUs connected to
16 memory modules)

» 1967: Amdahl's Law: predicting the maximum speedup when new
CPUs are added

» 1969: Multics introduced (8 CPUs)
» 1970: C.mmp multiprocessor (16 CPUs)

» 1976: ILLIAC IV (up to 256 CPUs): "perhaps the most infamous of
Supercomputers”

Source: en.wikipedia.org

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 2/30



Networked Parallel Computers

v

Tightly coupled multiprocessor machines

v

Task parallelism
» Communication should be responsive

» Communication should not have high overhead

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 3 /30



(-

ting " “'

routing network

Hypercubie routing network

for scientifi

Intended fi Al, but

communicqidn chanr!

ver a hyperc

Source: Photographer: Tom Trower, 1993

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 4 /30



Networking Problems Faced by Parallel Computers

v

High-latency

v

Throughput optimization based on big messages

Disconnect between software and hardware design

v

v

Synchronous messaging

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 5 /30



Active Messages: a Mechanism for Integrated
Communication and Computation

In Proceedings of the 19th Annual International Symposium on Computer
Architecture, 1992

g

Thorsten von Eicken David E. Culler ~ Seth Copen Goldstein

\
|
l |

Klaus Erik Schauser

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 6 /30



Outline

v

Motivation for Active Messages

v

Solution — how do they achieve the goals

v

Implementation

v

Evaluation of Active Messages

v

Perspective

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 7 /30



Active Messages: Motivation

» CPU design based on raw performance, not so much on networking
» Synchronous messaging is slow due to high latency

» Communication and computation should be combined

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 8 /30



Active Messages: Solution

» Take advantage of fast DMA and specific network interface
capabilities

» Use asynchronous messaging paradigm; latency becomes less of a
problem

» Implement queues to buffer data so that it is ready for computation

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 9 /30



Asynchronous Messaging

1 ¢ NodeZ¢

COMPUTE
| COMPUTE
T estiosens |
SEND |

ready to receive

|

COMPUTE

Figure 1: Three-phase protocol for synchronous send and receive. Note that the communication latency is
at best three network trips and that both send and receive block for at least one network round-trip each.

COMPUTE

node N ‘ node Nﬂ‘
SEND. SEND.
RIGHT RIGHT
I |
SEND. SEND
LEFT LEFT
I I
COMPUTE COMPUTE
I |
RECV RECV.
LEFT. LEFT.
I |
RECV. RECV.
RIGHT RIGHT

' '

Figure 2: Communication steps required for neighboring processors in a ring to exchange data using
asynchronous send and receive. Data can be exchanged while computing by executing all sends before the
computation phase and all receives afterwards. Note that bufferspace for the entire volume of communication
‘must be allocated for the duration of the computation phase!

Source: same paper



Asynchronous Messaging

a) GET cost model ¥

& & & &
& ¥ g @ F
8 & & © & PO &
S 8 oy S §
Proc Compose  send c;-" n S;L(‘ (;? n receive handle
& ]
N @ &
MNet xmit hops| < sz A Xmit hops
rProc receive service reply

b) Overlapping communication and computation .
overlapped computation

Proc compose  send | compute |recei\re$er\ricei replyu "compute ireceive handie
Met Xxmit / hops \ xmit hops
rProc fomposd send i compﬁle irecei\reser\rice reply | \compute receive] handle |

Figure 6: Performance model for GET. Compose accounts for the time to set-up the request. Xmit is the time
to inject the message into the network and hops is the time taken for the network hops. Service includes for

copying the data into the reply buffer and handle for the time to copy the data into the destination memory
block.

Source: same paper



Utilizes resources (almost) as predicted
% utilization

100 |

bredictef] processor utilifation _

"-/T\eas'ur 4 procepsor utilfzation

90

80

70 /

50 : "\ L]

TETSUred iint ir s
———2Ted Jint uti
T Wization |

40

30

20 /

10

oot 8 16 32

Figure 5: Performance of Split-C matrix multiply on 128 processors compared to predicted performance
. . l Source: same paper
using the model shown in Figure 6.
Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 12 / 30



Active Messages: Conclusion

» Case for hardware to better support networking
» Good basis for parallel computing (Split-C)

» Design is specific to parallel computing

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 13 /30



Active Messages: Perspective

» What happened to Active Messages?
» Where is parallel computing? Niche computing?

» Change in hardware? We stopped increasing CPU frequency

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 14 / 30



More Than Low Latency

v

Low latency communication is essential in parallel computing

v

What happens with multiple processes?
What about isolation?
Do you let the kernel handle isolation?

v

v

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 15 / 30



Networking Through Kernel

» Kernel abstracts networking device
» Processes must use the underlying protocols

» Kernel responsible for management and isolation (policy)

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 16 / 30



User Space Networking

» Remove kernel from critical path
» Reduce the latency between network interface and process

» Program can decide protocols

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 17 / 30



U-Net: A User-Level Network Interface for Parallel and
Distributed Computing

15th SOSP, December 1995.

?

Anindya Basu Vineet Buch

“

Werner Vogels

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 18 / 30



Outline

v

Motivation/Goals for U-Net
Design

v

\4

Implementation
Evaluation of U-Net

v

v

Perspective

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 19 / 30



U-Net Goals

» Low latency and high bandwidth with small messages
» Application access to underlying protocols

» Practical integration with existing systems

Solution: virtual network interfaces (endpoints)

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 20 / 30



a) Legend:

User
application

K Operating
system
kernel

N Network
Intertace

NI with
message
multiplex

Source: same paper

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 21 /30



a)

recv free send
queue queue communication segment queue
—1 P~
_.\ —~—
7
—k -
= g
U-Net endpoint Figure 2: U-Net building blocks.

a) Endpoints serve as an application’s handle into the net-
work, communication segments are reglons of memory that
hold message data, and message queues (sendrecv/free
queues) hold descriptors for messages that are to be sent or

b) application 1 application 2 ’1pp|ication 3 that have been received

Or— bl Regular endpoints are serviced by the U-Net network inter-
. face directly. Emulated endpoints are serviced by the kernel
en deI N emUIaI-Ed en]u"ited and consume no additional network Interface resources but
@Hd Eﬂlnt oint| cannot offer the same level of performance
Y&Q §/
—
kernel
endpoint|

/7

\U-Net NI /
e

Source: same paper

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 22 /30



Better utilization of available bandwidth

A U e Sttt
200 L YAM xfer
el
150 + F,,'I* : MWIJ ‘ /UAM -|
H 1 w"\«vJI IRaw U-Net: 110 ,,T%q_g(l,,,T ’LT, a
o0 o0 111|100 "‘a -
10 "I‘ UAM S S
[ N A R [
fJ 80L—-L——1__1 Jﬁ%— d-
|
50 F—t—d-——r—t—d-——+1 g 7lfJIlML ‘l ! 7‘
0 12 24 36 48 60
O+ebobo bbb dbo b b bbb e b b o b |
=] 3 ™ 2 bytes ¥
~ & ~ S

Figure 3: U-Net round-trip times as a function of message
size. The Raw U-Net graph shows the round-trip times for a
simple ping-pong benchmark using the U-Net interface
directly. The inset graph highlights the performance on small
messages. The UAM line measures the performance of U-Net
Active Messages using reliable single-cell requests and
replies whereas UAM xfer uses reliable block transfers of arbi-
trary size.

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 23 /30

qqo Mbits/s ! M bxlgsfs
16
120
14
100 .
80 10
60 8
6
40
4
20 5
0 0

Figure 4: U-Net bandwidth as a function of message size. The
AAL-5 Iimit curve represents the theoretical peak bandwidth
of the fiber (the sawtooths are caused by the quantization into
48-byte cells). The Raw U-Net measurement shows the band-
width achievable using the U-Net interface directly, while
UAM storelget demonstrate the performance of reliable U-Net
Active Messages block transfers.

Source: same paper



Supports other protocols

4500 US :
5 140 Mbits/s Mbytes/s
4000 — R 16
120 U-Net UDP
3500 14
100 Fore UDP \
3000
sender 12
2500 Ethernet TCP 80 10
2000 Ethernet UDP 60 Fore UDP 8
receiver 6
1500 Fore ATM TCP
’ 40
1000 4
Fore ATM UDP 20
500 2
bytes
0 bytes 0 t Y 0
c s 8888 88 °g88g828¢g¢gs
S € 8 8 8 g ¢ = 8 8B 8 B 8 R 8
Figure 6: TCP and UDP round-trip latencies over ATM and ) ) ) )
Ethernet. as a function of message size Figure 7: UDP bandwidth as a function of message size.
1600 US
Mbits/s Mbytes/s
140 1400 Fore TCP
120 U-Net TCP 16
14 1200
100 Fore UDP
12 1000
80 10
800 -
60 8
Fore TCP 6 600
10
4 400
20 2 U-Net TCP
200
0 bytes o U-Net UDP
© 8 8 8 8 8 g bytes Source: same paper
o j=] i=] o [=] i=]
< n © ~

0
Theo Jepsen (CanﬂLpﬁ‘iyg;ity) . CS%41‘0: Advanced Sysms 8 8 8 87 Oct8ber 2013 24 /30



Performs well compared to other systems (*run on different h/w)

matrix multipl?‘ sample sort, 512K
1.21128x128 | 16x16 | smlmsg| bulk msg
blocks blocks
1.0 O
0.8
0.6
w4l o F 0
0.2
0.0 w E 2 E g
3<23<2
2.
ECM-5 OATM  Meiko
11
MTesglesze sle = g
L =z29 2|2 2|2 =2 2
ZEZ|ZEgZE |38
radix sort | radix sort |connected |conjugate
small msg | bulk msg components gradient

Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication  breakdown is  shown for three
applications.

Theo Jepsen (Cornell University) CS 6410: Advanced Systems

Source: same paper

17 October 2013 25/ 30



U-Net: Conclusion

» Reasonable performance
> Is there process isolation?

» TCP/IP implementation should facilitate integration with other
networks

» Adoption? Applicability in existing systems?
» Approach reminiscent of a microkernel’s: move networking to
userspace

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 26 / 30



U-Net: Perspective

> |s there sufficient granularity of network resources?

» Do we have user-level interfaces today?

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 27 / 30



What happened to U-Net?

v

Virtual Interface Network (1997) — userspace zero-copy networking

v

RDMA — Remote DMA: zero-copy over network done by network card

v

Myrinet (1995): two fibre optic cables, packet switching, lower
protocol overhead than Ethernet, low latency

Infiniband (1999): high speed I/O (storage)
Virtualization: hypervisor kernel-bypass

v

v

Source: en.wikipedia.org

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 28 / 30



Active Messages and U-Net: Comparison

v

Both are in parallel computing environment
However, U-Net also focused on TCP and UDP

» Do we use this today?

v

v

What happened to parallel computing

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 29 / 30



Perspective

v

Less tightly-coupled processing today
Active Networks in mid 90s

Disliked for disobeying end-to-end argument
15 years later: SDN

Is parallel computing still important today?

v

v

v

v

Theo Jepsen (Cornell University) CS 6410: Advanced Systems 17 October 2013 30/ 30



