
Modern Systems:
Security
October 8, 2012

Background:
Trusted Platform Modules
What is a TPM?
● 16 Platform Configuration Registers (PCRs)
● Random Number Generator (RNG)
● Endorsement Key (EK) burned in hardware

What can it do?
● Sealed storage
● Remote attestation
● Platform authentication

Who uses them?
● Microsoft, Google, Oracle, VMWare, etc.

Background:
Information Flow

Information release vs information propagation

Security levels and noninterference

Explicit vs implicit flows

Covert channels

Security type systems and static analysis

Nexus

Emin Gün Sirer
Willem de Bruijn

Patrick Reynolds*
Alan Shieh

Kevin Walsh
Dan Williams**

Fred B. Schneider

*Now at GitHub **Now at IBM Watson

What’s wrong with TPMs?

Axiomatic Trust

Requires whitelisting software

Violates user privacy

Maintenance is a pain

Nexus Authentication Logic
Goal: an analytic basis for authorization

Mechanism: “A logic of belief”

Features:
● Principles and subprinciples
● Delegation
● Guards

Logical Attestation
Credentials-Based Authorization
● All access control based on credentials
● Credentials take form of Nexus Authorization Logic

(NAL) proofs
● Guard on resources a simple proof checker

A Label is a statement attributed to a principal
“P says S”

Labels are credentials

Logical Attestation (con’t)
Goal formulas guard system resources

“Owner says TimeNow < Mar19”

Goal formulas satisfied by gathering credentials
“Filesystem says NTP speaksfor Filesystem on TimeNow

&& NTP says TimeNow < Mar19”

Time-sensitive and non-monotonic statements must be
backed by an authority. Authority is set by goal formula.

Nexus OS Features
Microkernel -- Small TCB (~21K LOC)

Some standard POSIX features
● python
● lighttpd
● sqlite

Non-standard features
● Labels, Labelstores, Guards, Authorities
● Introspection
● Interposition
● Secure Persistent Storage
● Secure Boot Sequence

Nexus OS Support for
Logical Attestation
Cryptography is expensive, so Nexus only encrypts labels
when exporting
● Labels created with ‘say’ system call
● Labels kept in kernel data structure (labelstores)
● Labels can be passed through secure IPC

Invoking guards is expensive, so Nexus caches decisions
whenever possible
● Decisions cache invalidated if relevant system state

changes
● Proofs that rely on authorities can sometimes have

lemmas extracted and cached

NB: Slide by Gun Sirer

Introspection and
Interpositioning
Introspection: live access to kernel metadata
● Used to provide synthetic basis for trust
● Labeling functions can verify system’s runtime

properties

Interpositioning
● Sometimes we need to run untrusted code
● Interpositioning allows us to capture and transform (if

needed) I/O instructions to enforce some policy
● Can also block IPC, isolating a process from its

environment
● Makes an untrusted process trustworthy

Secure Persistent Storage
TPM has very limited onboard secure storage. Nexus
multiplexes it with Secure Storage Regions (SSRs).

Confidentiality ensured with CTR AES

Integrity ensured with a Merkle hash tree, with the root
stored in the TPM

Storage (con’t)
Virtual Data Integrity Register (VDIR)
● kernel abstraction used to hold SSR hashes
● VDIRs stored in hash tree with root in TPM

Virtual Key (VKEY) - used for secure key storage

VDIR and VKEY operations can be protected with logical
attestation, so complicated security policies (HIPAA, etc)
can be enforced.

NB: Updates to TPM storage are not atomic, so an updated
protocol is needed to protect against power failures.

Secure Boot Sequence
Build a hash chain from the BIOS to the Nexus kernel
● Power on: PCRs initialized to known value
● BIOS extends PCRs with firmware hash
● Firmware extends PCRs with bootloader hash
● Bootloader extends PCRs with Nexus hash
● Nexus unseals Storage Root Key (SRK) and restores

internal state from disk

Each stage of boot sequence relies on hash of previous
stage, so the kernel cannot be subverted by an attacker
changing the software stack or stealing the disk and putting
it in a different computer.

Does Nexus really solve the TPM’s privacy
problem (i.e. exposing the user’s software
stack)?

Nexus Applications
Fauxbook

Movie Player

Java Object Store

Not-A-Bot

TruDocs

CertiPics

Protocol Verifiers

Fauxbook
A privacy-protecting social network!

Application developer assured fair share of resources

Users assured data will not leak out of social circle

Developers cannot inspect or data mine user information

Cloud provider must run Nexus OS

Data protections ensured with logical attestation

Streaming Movie Player, Java
Object Store, and Not-A-Bot

Movie Player
● Old solution: Content provider requires hash of OS and

media player before streaming content
● Nexus solution: Nexus provides certificate showing the

media player cannot write to disk or the network
Java Object Store
● Old solution: Dynamically type check objects during

deserialization
● Nexus solution: Nexus provides certificate that objects

were serialized with a type safe JVM
Not-A-Bot
● Emails sent with certificate from keyboard driver

showing that a human wrote the email

TruDocs, CertiPics, and
Protocol Verifiers
TruDocs and CertiPics
● Document management systems meant to prevent

forgery and plagiarism
● CertiPics keeps original image, final image, and a log of

changes, allowing a verifier to ensure no policy breech
● TruDocs exports a certificate stating that the new

document speaks for another if its quotations follow
certain policies

Protocol Verifiers
● Guards ensure that outgoing messages follow certain

safety rules

Nexus Evaluation:
Microbenchmarks

Size of TCB

System Call Overhead

Nexus Evaluation:
Proof Evaluation Costs

NB: Most proofs in Nexus have fewer than 15 rules.

Nexus Evaluation:
Webserver

Fabric

Andrew Myers
Owen Arden
Mike George

Jed Liu
K. Vikram

Danfeng Zhang

Fabric Overview
What is Fabric?
● A distributed system for federated storage and

computation
● A high-level programming language designed to provide

an interface to the above system

Design goal: secure shared storage and computation
between mutually distrusting entities

Fabric Architecture
An unbounded number of
networked nodes, both
trusted and untrusted.

Three types of nodes
● Storage nodes
● Worker nodes
● Dissemination nodes

Fabric Security Model
Principals: authority, privilege, trust
● Examples: users, roles, groups, organization, privileges,

Fabric nodes
● Principles can delegate to other principals with the ‘acts-

for’ relation (same as Nexus ‘speaksfor’)

Labels
● Carried with objects, state which principles can perform

which operations to that object
● Code statically checked at compile time to prevent

implicit and explicit flows that violate the policy

Cornell CMS ported to FabIL.

SIF Calendar, OO7 ported to full fabric language.

End result: porting code is easy, but it’s up to an order of
magnitude slower. Is this a useful result?

Fabric Evaluation

Comparisons
Confidentiality and integrity:
● Nexus: Trusted IPC through kernel. Persistent state

checked against Merkle hash tree.
● Fabric: All network communication over SSL. Persistent

state checked against hash. Updates transactional.

Availability
● Nexus: OS kernel makes guarantees about fairly

multiplexing resources.
● Fabric: Relies on network’s availability guarantees.

Security Models
Nexus: Access control based on credentials and first order
logic.

Fabric: Access control based on language features and
information flow.

Higher order bits
“Arguably, a large part of designing a secure system is
concerned with aligning what must be trusted with what can
be trusted.”

- Fred Schneider

Nexus says, “Trust your OS!”

Fabric says, “Trust your compiler!”

Does either approach have an inherent strength or
weakness versus the other?

Conclusion
Two approaches to authorization: Nexus Authorization
Logic and Information Flow

Both systems
● use synthetic and analytic bases of trust
● are roughly an order of magnitude slower than

unsecured systems in the worst case
● require extra sophistication from the programmer

Are these good tradeoffs?

Additional Sources
Nexus OS website: http://www.cs.cornell.edu/people/egs/nexus/index.php

Gun Sirer’s slides on Nexus from SOSP ‘11: http://www.cs.cornell.
edu/People/egs/papers/nexus-sosp-slides.pptx

Fabric website: http://www.cs.cornell.edu/projects/fabric/

Principles of Secure Information Flow Analysis, Geoffrey Smith, Chapter 13
(pp. 291-307) of Malware Detection, Springer-Verlag, 2007.Smith

Nexus authorization logic (NAL): Design rationale and applications" http://dl.
acm.org/citation.cfm?id=1952990

http://www.cs.cornell.edu/people/egs/nexus/index.php
http://www.cs.cornell.edu/projects/fabric/
https://www.cs.cornell.edu/courses/CS5430/2013sp/paper.smithInfoFlow.pdf
http://dl.acm.org/citation.cfm?id=1952990
http://dl.acm.org/citation.cfm?id=1952990
http://dl.acm.org/citation.cfm?id=1952990
http://dl.acm.org/citation.cfm?id=1952990

