
Formally Verified
Operating
Systems
SINGULARITY AND SEL4

Outline
 Formal Verification & Type Systems

 Singularity
◦ Software-Isolated Processes

◦ Contract-Based Channels

◦ Manifest-Based Programs

◦ Formal Verification

 seL4
◦ Assumptions

◦ Design Path

◦ Costs of Verification

Formal Verification in a
nutshell

 Create a collection of rules

 Claim/Prove that those rules describe certain properties

 Check whether/Prove that something adheres to those rules
◦ If yes, then that something has the above properties

 Properties may be very weak or very strong
◦ Weak properties: easy to prove

◦ Strong properties: may not be provable
◦ Rice’s theorem: it is impossible to prove anything non-trivial for arbitrary programs

Formal Verification Example
 Hoare Logic:

{𝑃} 𝑠 {𝑄}

fun tenmod (mod) { mod ≠ 0 }
returns ret { ret = 10 % mod }
is
 return 10 % mod;
end;

𝑃1 𝑥 ≔ 5; 𝑃1 ∖ 𝑥 = ⋯ ∪ 𝑥 = 5

Type Systems
 “The world’s best lightweight formal method” (Benjamin Pierce)

 Mainly for safety properties

 Static type-checking
◦ Proving properties of your program

◦ May need annotations from the programmer

 Almost all programming languages have type systems
◦ But the static guarantees vary a lot

fun factorial(n) is
 if (n == 1)
 return 1;
 else
 return n * factorial(n – 1);
end;

fun factorial(n : int) returns int is
 if (n == 1)
 return 1;
 else
 return n * factorial(n – 1);
end;

fun factorial(n : int) { n > 0 }
returns r : int { r == n! } is
 if (n == 1)
 return 1;
 else
 return n * factorial(n – 1);
end;

Annotations

Note
 Not all equivalent programs are equally amenable to verification

void swap(ptr A, ptr B)
{
 ptr C := A;
 A := B;
 B := C;
}

void swap(ptr A, ptr B)
{
 A := A xor B;
 B := A xor B;
 A := A xor B;
}

vs.

Postcondition: 𝐴𝑝𝑜𝑠𝑡 = 𝐵𝑝𝑟𝑒 ∧ 𝐵𝑝𝑜𝑠𝑡 = 𝐴𝑝𝑟𝑒

Singularity – Takeaway Goal
 PL techniques can make kernel & programs a lot safer

 Safe programs can run in kernel-space

 IPC is really fast when programs run in kernel-space

 (Reasonable?) restrictions on programs make the job of the OS much
easier

Singularity - Authors

Galen Hunt
- University of Rochester (PhD, 1998)
- Created prototype of Windows Media Player
- Led Menlo, Experiment 19 and Singularity projects

Jim Larus
- UC Berkeley (PhD, 1989)
- University of Wisconsin-Madison (1989-1999)
- University of Washington (2000-)
- Microsoft Research (1997-)

- eXtreme Computing Group (2008-2012)

Singularity – Design Goals
 - A dependable system

◦ Catch errors as soon as possible

Compile Time > Installation Time > Run Time
Design Time Load Time

Singularity - 3 Core Ideas
 Software-Isolated Processes (SIPs)

 Contract-Based Channels

 Manifest-Based Programs

Software-Isolated Processes
 Programs written in a memory-safe language

◦ Cannot access data of other processes

 Cannot dynamically load code

 Can only communicate with other processes via messages
◦ Sender and receiver always known

 Kernel respects the above limitations, too

 Programs run in kernel-space

 Every process has its own runtime and GC

Contract-enforcing channels
 The only way of inter-process communication

 Endpoints always belong to specific threads
◦ Can be passed to other programs via channels

 Sending data also transfers ownership of data
◦ Process cannot access data anymore after sending it

 Adherence to communication protocol statically verifiable

Contract-enforcing channels

contract C1 {
 in message Request(int x) requires x>0;
 out message Reply(int y);
 out message Error();
 state Start: Request?
 -> (Reply! or Error!)
 -> Start;
}

Source: Singularity Technical Report, Hunt et al. (MSR-TR-2005-135)

Manifests
 Manifests describe :

◦ the complete program code
◦ The program itself

◦ All dependencies

◦ the resources a program might access

◦ the communication channels it offers

Can be statically verified

Guide install-time compilation

Manifests
<manifest>
<application identity="S3Trio64" />
<assemblies>
<assembly filename="S3Trio64.exe" />
<assembly filename="Namespace.Contracts.dll" version="1.0.0.2299"/>
<assembly filename="Io.Contracts.dll" version="1.0.0.2299" />
<assembly filename="Corlib.dll" version="1.0.0.2299" />
<assembly filename="Corlibsg.dll" version="1.0.0.2299" />
<assembly filename="System.Compiler.Runtime.dll“ version="1.0.0.2299" />
<assembly filename="Microsoft.SingSharp.Runtime.dll“ version="1.0.0.2299" />
<assembly filename="ILHelpers.dll" version="1.0.0.2299" />
<assembly filename="Singularity.V1.ill" version="1.0.0.2299" />
</assemblies>
<driverCategory>
<device signature="/pci/03/00/5333/8811" />
<ioMemoryRange index="0" baseAddress="0xf8000000"
rangeLength="0x400000" />
<ioMemoryRange baseAddress="0xb8000" rangeLength="0x8000“ fixed="True" />
<ioMemoryRange baseAddress="0xa0000" rangeLength="0x8000“ fixed="True" />
<ioPortRange baseAddress="0x3c0" rangeLength="0x20" fixed="True" />
<ioPortRange baseAddress="0x4ae8" rangeLength="0x2" fixed="True" />
<ioPortRange baseAddress="0x9ae8" rangeLength="0x2" fixed="True" />
<extension startStateId="3" contractName="Microsoft.Singularity.Extending.ExtensionContract"
endpointEnd="Exp“ assembly="Namespace.Contracts" />
<serviceProvider startStateId="3" contractName="Microsoft.Singularity.Io.VideoDeviceContract"
endpointEnd="Exp"assembly="Io.Contracts" />
</driverCategory>
...
</manifest> Source: Singularity Technical Report, Hunt et al. (MSR-TR-2005-135)

Verification
 Mostly safety properties

◦ Safe memory access

◦ Guaranteed by the type system

 Support for contract-based verification
◦ Enables verification of functional correctness

◦ Not ubiquitously applied in kernel

◦ Some parts are checked
◦ Channel contracts

◦ Manifests

Benefits of safety properties

Source: Singularity Technical Report, Hunt et al. (MSR-TR-2005-135)

Singularity’s Money Graph

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

4 16 64 256 1024 4096 16384 65536

C
P

U
 C

yc
le

s

Message Size (bytes)

IPC Costs

Singularity Linux Windows

Source of Data: Sealing OS Processes to Improve Dependability and Safety, Hunt et al., EuroSys 2007

Takeaway
 PL techniques can make kernel & programs a lot safer

 Safe programs can run in kernel-space

 IPC is really fast when programs run in kernel-space

 (Reasonable?) restrictions on programs make the job of the OS much
easier

 Discussion

 Can systems programmers live without C?

 Is the sharing of data between processes really not important?

seL4 – Takeaway Goal
 Functional verification of microkernels is possible

 Performance of verified kernels can be OK

 BUT:

 Verification is a colossal effort

 Still needs to assume compiler correctness ( huge trusted base)

seL4 - Authors

Gerwin Klein Kevin Elphinstone Gernot Heiser June Andronick David Cock

Philip Derrin Kai Engelhardt

 Dhammika Elkaduwe Rafal Kolanski

Michael Norrish

Thomas Sewell

Harvey Tuch

Simon Winwood

seL4 – Project Leaders
Gerwin Klein
- TU Munich (PhD)
- University of New South Wales
- Does not put a CV on his webpage

Kevin Elphinstone
- University of New South Wales
- Does not put a CV on his webpage
- Collaborated with Jochen Liedtke (L4)

Gernot Heiser
- ETH Zurich (PhD, 1991)
- University of New South Wales
- Created Startup “Open Kernel Labs”

to sell L4 technology
- Collaborated with Jochen Liedtke (L4)

Secure L4 – Design Goal
 Create a formal model of a microkernel

 Implement the microkernel

 Prove that it always behaves according to the
specification

Assumptions
 Hardware works correctly

 Compiler produces machine code that fits their formalization

 Some unchecked assembly code is correct

 Boot loader is correct

How to design kernel + spec?
 Bottom-Up-Approach:

 Concentrate on low-level details to maximize performance

 Problem:

 Produces complex design, hard to verify

Reminder
 Not all equivalent programs are equally amenable to verification

void swap(ptr A, ptr B)
{
 ptr C := A;
 A := B;
 B := C;
}

void swap(ptr A, ptr B)
{
 A := A xor B;
 B := A xor B;
 A := A xor B;
}

vs.

Postcondition: 𝐴𝑝𝑜𝑠𝑡 = 𝐵𝑝𝑟𝑒 ∧ 𝐵𝑝𝑜𝑠𝑡 = 𝐴𝑝𝑟𝑒

How to design kernel + spec?
 Top-Down-Approach:

 Create formal model of kernel
◦ Generate code from that

 Problem:

 High level of abstraction from hardware

How to design kernel + spec?
 Compromise:

 Build prototype in high-level language (Haskell)
◦ Generate “executable specification” from prototype

◦ Re-implement executable specification in C

◦ Prove refinements:
◦ C ⇔ executable specification

◦ Executable specification ⇔ Abstract specification (more high-level)

Concurrency is a problem
 Multiprocessors not included in the model

◦ seL4 can only run on a single processor

 Interrupts are still there
◦ Yield points need to establish all system invariants

Cost of Verification

Source: seL4, Klein et al.

Cost of Verification

Abstract Specification
1%

Haskell Prototype
9%

Executable
Specification

1% C implementation
1%

Verification
Frameworks

40%

seL4-Proofs
48%

Amount of Work

Abstract Specification Haskell Prototype Executable Specification

C implementation Verification Frameworks seL4-Proofs

Source of Data: seL4, Klein et al.

Takeaway
 Functional verification of microkernels is possible

 Performance of verified kernels can be OK

 BUT:

 Verification is a colossal effort

 Still needs to assume compiler correctness ( huge trusted base)

 Discussion

 Is proving functional correctness worth the effort?

Singularity vs. seL4
Goal

Singularity seL4

A verifiably safe system.
Kernel should fail “safely” when an
error occurs.

A verifiably correct system.
There just should not be any errors.

Ease of Verification

Singularity seL4

Most guarantees come for free
Annotations and contracts can give
more guarantees

Several person-years just for proving
about 80 invariants.

Perspective
 Lots of room between Singularity and seL4

◦ I.e.: more parts of Singularity can be verified for functional correctness

 Both are verified microkernels
◦ Good Isolation  additional components can be verified independently

