
Classic Systems:

Unix and THE

Presented by Hakim Weatherspoon

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

• Background of authors at Bell Labs

– Both won Turing Awards in 1983

• Dennis Ritchie

– Key developer of The C Programming Lanuage, Unix,

and Multics

• Ken Thompson

– Key developer of the B programming lanuage, Unix,

Multics, and Plan 9

– Also QED, ed, UTF-8

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

• Classic system and paper

– described almost entirely in 10 pages

• Key idea

– elegant combination of a few concepts that fit

together well

– API deliberately small

• Instead of collection of specialized API’s for each

device/abstraction

System features

• Time-sharing system

• Hierarchical file system

• Device-independent I/O

• Shell-based, tty user interface

• Filter-based, record-less processing paradigm

• Major early innovations:

– “fork” system call for process creation, file I/O via a

single subsystem, pipes, I/O redirection to support

chains

Version 3 Unix

• 1969: Version 1 ran PDP-7

• 1971: Version 3 Ran on PDP-11’s

– Costing as little as $40k!

• < 50 KB

• 2 man-years

 to write

• Written in C

PDP-7 PDP-11

File System

• Ordinary files (uninterpreted)

• Directories (protected ordinary files)

• Special files (I/O)

Uniform I/O Model

• open, close, read, write, seek

– Uniform calls eliminates differences between devices

• other system calls

– close, status, chmod, mkdir, ln

• bytes, no records

Directories

• root directory

• path names

• rooted tree

• current working directory

• back link to parent

• multiple links to ordinary files

Special Files

• Uniform I/O model

– Each device associated with at least one file

– But read or write of file results in activation of device

• Advantage: Uniform naming and protection model

– File and device I/O are as similar as possible

– File and device names have the same syntax and

meaning, can pass as arguments to programs

– Same protection mechanism as regular files

Removable File System

• Tree-structured

• Mount’ed on an ordinary file

– Mount replaces a leaf of the hierarchy tree (the

ordinary file) by a whole new subtree (the hierarchy

stored on the removable volume)

– After mount, virtually no distinction between files on

permanent media or removable media

Protection

• User-world, RWX bits

• set-user-id bit

• super user is just special user id

File System Implementation

• System table of i-numbers (i-list)

• i-nodes

• path name scanning

• mount table

• buffered data

• write-behind

I-node Table

• short, unique name that points at file info.

• allows simple & efficient fsck

• cannot handle accounting issues

File name Inode# Inode

Many devices fit the block model

• Disks

• Drums

• Tape drives

• USB storage

• Early version of the ethernet interface was

presented as a kind of block device (seek disabled)

• But many devices used IOCTL operations heavily

Processes and images

• text, data & stack segments

• process swapping

• pid = fork()

• pipes

• exec(file, arg1, ..., argn)

• pid = wait()

• exit(status)

Easy to create pipelines

• A “pipe” is a process-to-process data stream,

could be implemented via bounded buffers,

TCP, etc

• One process can write on a connection that

another reads, allowing chains of commands

 % cat *.txt | grep foo | wc

• In combination with an easily programmable

shell scripting model, very powerful!

The Shell

• cmd arg1 ... argn

• stdio & I/O redirection

• filters & pipes

• multi-tasking from a single shell

• shell is just a program

• Trivial to implement in shell

– Redirection, background processes, cmd files, etc

Traps

• Hardware interrupts

• Software signals

• Trap to system routine

Perspective

• Not designed to meet predefined objective

• Goal: create a comfortable environment to

explore machine and operating system

• Other goals

– Programmer convenience

– Elegance of design

– Self-maintaining

Perspective

• But had many problems too. Here are a few:
– File names too short and file system damaged on

crash

– Didn’t plan for threads and never supported them well

– “Select” system call and handling of “signals” was
ugly and out of character w.r.t. other features

– Hard to add dynamic libraries (poor handling of
processes with lots of “segments”)

– Shared memory and mapped files fit model poorly

• ...in effect, the initial simplicity was at least partly
because of some serious limitations!

“THE”-Multiprogramming System
Edsger W. Dijkstra

• Received Turing Award in 1972

• Contributions

– Shortest Path Algorithm, Reverse Polish Notation,

Bankers algorithm, semaphore’s, self-stabilization

• Known for disliking ‘goto’ statements and using

computers!

“THE”-Multiprogramming System
Edsger W. Dijkstra

• Never named “THE” system; instead, abbreviation

for "Technische Hogeschool Eindhoven”

• Batch system (no human intervention) that

supported multitasking (processes share CPU)

– THE was not multiuser

• Introduced

– software-based memory segmentation

– Cooperating sequential processes

– semaphores

Design

• Layered structure

– Later Multics has layered structure, ring segmentation

• Layer 0 – the scheduler

– Allocated CPU to processes, accounted for blocked proc’s

• Layer 1 – the pager

• Layer 2 – communication between OS and console

• Layer 3 – managed I/O

• Layer 4 – user programs

• Layer 5 – the user

– “Not implemented by us”!

Perspective

• Layered approach

– Design small, well defined layers

– Higher layers dependent on lower ones

• Helps prove correctness

• Helps with debugging

• Sequential process and Semaphores

Next Time

• Read and write review:

– SEDA: An Architecture for Well Conditioned, Scalable

Internet Services, Matt Welsch, David Culler, and Eric

Brewer. Proceedings of the Eighteenth ACM

Symposium on Operating Systems Principles (Banff,

Alberta, Canada, 2001), pages 230--243

– On the duality of operating system structures, H. C.

Lauer and R. M. Needham. ACM SIGOPS Operating

Systems Review Volume 12, Issue 2 (April 1979),

pages 3--19.

Next Time

• Read and write review:

• Lab 0 – finish today

• Lab 1 – available later today and due next

Friday

• Project Proposal due in two weeks

– talk to me and other faculty and email and talk to me

• Check website for updated schedule

