CS 6410: Advanced Systems

Fall 2013

Instructor: Hakim Weatherspoon

TA: Erluo Li and Qin Jia

Who am I?

- Prof. Hakim Weatherspoon
 - (Hakim means Doctor, wise, or prof. in Arabic)
 - Background in Education
 - Undergraduate University of Washington
 - Played Varsity Football
 - » Some teammates collectively make \$100's of millions
 - » I teach!!!
 - Graduate University of California, Berkeley
 - Some class mates collectively make \$100's of millions
 - -I teach!!!
 - Background in Operating Systems
 - Peer-to-Peer Storage
 - Antiquity project Secure wide-area distributed system
 - OceanStore project Store your data for 1000 years
 - Network overlays
 - Bamboo and Tapestry Find your data around globe
 - Tiny OS
 - Early adopter in 1999, but ultimately chose P2P direction

Goals for Today

- Be brief!
- Why take this course?
- How does this class operate?
- Class details

Why take this course

- Learn about systems abstractions, principles, and artifacts that have had lasting value,
- Understand attributes of systems research that is likely to have impact,
- Become comfortable navigating the literature in this field,
- Gain experience in thinking critically and analytically about systems research, and
- Acquire the background needed to work on research problems currently under study at Cornell and elsewhere.

Coverage

- The course is about the cutting edge in computer systems – the topics that people at conferences like ACM Symposium on Operating Systems Principles (SOSP) and the Usenix Conference on Operating Systems Design and Implementation (OSDI) love
- We look at a mix of topics:
 - Classic insights and classic systems that taught us a great deal or that distilled key findings into useable platform technologies
 - Fundamental (applied theory) side of these questions
 - New topics that have people excited right now

 Some people get emotional over which is best!

Who is the course "for"?

- Most of our CS6410 students are either
 - PhD students (but many are from non-CS fields, such as ECE, CAM, IS, etc)
 - Undergraduates seriously considering a PhD
- A small subset are MEng students
 - Some MEng students are ok pretending to be PhD students and have the needed talent and background
 - MEng students not fitting this profile won't get permission to take the course
 - CS5410 was created precisely to cover this kind of material but with more of an MEng focus and style

Why take this course

Satisfy systems breadth requirement

	Research Styles			tyles
		Theoretical	Systems	Applied
	Algorithms/Theory	68xx		
Areas	AI	676x		67xx except 676x
	Systems		632x, 64xx	
	PL	6110		
	Sci. Comp. and Apps			62xx, 65xx, 66xx

How class operates and class detail

How this class operates

- Instructor: Hakim Weatherspoon
 - hweather@cs.cornell.edu
 - Office Location: 4105C Upson

- TA: Erluo Li and Qin Jia
 - el378@cs.cornell.edu and qinjia@cs.cornell.edu
- Lectures:
 - CS 6410: Tu, Th: 10:10 11:25 PM, 407 Phillips Hall

Course Help

- Course staff, office hours, etc:
 - http://www.cs.cornell.edu/courses/cs6410/2013fa

- Research projects
 - http://fireless.cs.cornell.edu

CS 6410: Overview

Prerequisite:

- Mastery of CS 4410 material
 - Fundamentals of OS design
 - How parts of the OS are structured
 - What algorithms are commonly used
 - What are the mechanisms and policies used

Class Structure

- Papers Readings (whole semester)
- Paper Presentations (whole semester)
- Labs (first 1/8)
- Research Project (second 7/8)

CS 6410: Topics

- Operating Systems
 - Concurrency, file systems, VM, I/O, etc.
- Distribution/Networking
 - RPC, clusters, pub/sub, mobility, etc.
- Fault Tolerance
 - Replication, consensus, transactions, etc.

CS 6410: Paper Readings

- Required reading is always two papers
 - Different approach, competition, criticism,...
 - Papers pulled from, best journals and conferences
 - TOCS, SOSP, OSDI, ...
 - 27 lectures, 54 (required) papers!
- Read papers before each class and bring notes
 - takes ~3 to 4 hrs per paper, write notes and questions
- Write a review and turn in at least one hour before beginning of class
 - Turn on online via Course Management System (CMS)
 - No late reviews will be accepted

CS 6410: Writing Reviews

- Each student is required to prepare notes on each paper before class and to bring them to class for use in discussion.
- Your notes should list assumptions, innovative contributions and criticisms. Every paper in the reading list has at least one major weakness.
- Turn paper reviews in online before class via CMS
 - Be succinct—One paragraph per paper
 - Short summary of paper (two or three sentences)
 - Two to three strengths/contributions
 - and at least one weaknesses
 - One paragraph to compare/contrast papers
 - In all, turn in two to three paragraphs

CS 6410: Paper Presentations

- Each person will present a paper one or two times, depending on class size
 - Read and understand both required and suggested papers
- Two and a half weeks ahead of time
 - Meet with professor to agree on ideas to focus on
- One and a half weeks ahead of time
 - Have presentation prepared and show slides or "chalk talk" to professor
- One week ahead of time
 - Final review / do a number of dry-runs

CS 6410: Class Format

- 45 minutes presentation,
 30 minutes discussion/brainstorming.
 - In that order, or mixed.
- All students are required to participate!
- Counts in final grading.

CS 6410: Labs

- Labs (first 1/8 of semester)
 - 2 labs
 - Using Amazons EC2/S3 infrastructure
 - Building a proxy using events (instead of threads)

CS 6410: Research Project

- One major project per person
 - Or two persons for a very major project
- Initial proposal of project topic due mid-September
- Survey of area (related works)—due begin of October

- Midterm draft paper due begin of November
- Peer reviews—due a week later

- Final demo/presentation—due begin of December
- Final project report due a week later

CS 6410: Project Suggestions

http://fireless.cs.cornell.edu/projects

- Networks
 - Software Routers and Packet Processors
 - Netslice, FwP, Fmeter
- Data Center Networking and Network Measurements
 - Software Defined Network Adapter (SoNIC)
 - Cornell NLR Rings Testbed
- Cloud Storage
 - User controlled computation: xCloud-- http://xcloud.cs.cornell.edu
 - User controlled storage: Redundant Array of Cloud Storage (RACS)
- File Systems
 - Local and wide-area file systems enhancements
 - Reliability, consistency, performance

CS 6410: Project Suggestions

- Global-scale datacenters
 - Utilization, Low-energy file systems, Virtual machines, etc
 - High bandwidth-delay product networks enhancements
 - Cluster of servers, Netslice, RouteBricks, FWP, Maelstrom, etc.
 - Exploit parallelism in multicore processors
 - Thread vs events, operating system, network process architectures
- P2P
 - Cloud storage @ home, etc
- I have more ideas, but you can also talk to other faculty for more ideas:
 - Professors Birman, Sirer, Schneider, Van Renesse, Gehrke, Myers, or Foster

CS 6410: Project Infrastructure

- Fractus: our very own (mini) cloud
- Amazon's Cloud Infrastructure EC2/S3
- Emulab
- PlanetLab
- Cornell's Center for Advanced Computing (CAC)
- •

Important Project Deadlines

~9/19	Submit your topic of interest proposal
~10/3	Submit 2-3 pages survey on topic
~10/4	Discuss project topic with me
~11/5	Midterm draft paper of project
~12/5	Final demo/presentation of project
~12/12	Final paper on project

CS 6410: Grading

- Class Participation ~ 40%
 - lead presentation, reading papers, write reviews, participation in class discussion
- Project ~ 50%
 - Proposal, survey, draft, peer review, final demo/paper
- (maybe) Labs ~ 5%
- Subjective ~ 5%

This is a rough guide

Academic Integrity

- Submitted work should be your own
- Acceptable collaboration:
 - Clarify problem, C syntax doubts, debugging strategy
 - You may use any idea from any other person or group in the class or out, provided you clearly state what you have borrowed and from whom.
 - If you do not provide a citation (i.e. you turn other people's work in as your own) that is *cheating*.
- Dishonesty has no place in any community
 - May NOT be in possession of someone else's homework/project
 - May NOT copy code from another group
 - May NOT copy, collaborate or share homework/assignments
 - University Academic Integrity rules are the general guidelines
- Penalty can be as severe as an 'F' in CS 6410

Stress, Health and Wellness

- Need to pace yourself to manage stress
 - Need regular sleep, eating, and exercising
- Do not come to class sick (with the flu)!
 - Email me ahead of time that you are not feeling well
 - People not usually sick more than once in a semester

Before Next time

- Sign up twice to present (first and second half)
- Read two papers below and write review
 - End-to-end arguments in system design, J.H. Saltzer, D.P. Reed, D.D. Clark. ACM Transactions on Computer Systems Volume 2, Issue 4 (November 1984), pages 277--288.
 http://portal.acm.org/citation.cfm?id=357402
 - Hints for computer system design, B. Lampson. Proceedings of the Ninth ACM Symposium on Operating Systems Principles (Bretton Woods, New Hampshire, United States) 1983, pages 33--48.
 http://portal.acm.org/citation.cfm?id=806614
- Lab 0
 - Using Amazon's EC2/S3 infrastructure
- Check website for updated schedule