
Consensus in Distributed Systems

Gkountouvas Theodoros
tg294@cornell.edu

Advanced Systems (CS6410)
Department of Computer Science

Cornell University

October 25, 2012

1



Presentation

...1 Deönition of the Problem

...2 Paxos Made Simple

...3 Paxos Made Moderately Complex

...4 Different Types of Paxos

...5 Discussion

2



Consensus Meaning

In Real World: A group of people reaches an
agreement after discussion.

In Distributed Systems: A group of process agrees
on a speciöc value.

3



Safety Requirements

Only a value that has been proposed may be
chosen.

Only a single value is chosen.

The majority processes learn that the same value is
chosen.

4



Assumptions
Asynchronous environment

I no bounds on timing characteristics
I clocks run arbitrarily fast
I message communication takes arbitrarily long

Crash failures
I processes just halt in case of failure

Reliable links
I messages will eventually be delivered
I messages can be duplicated and reordered
I communication is not corrupted

5



Paxos
Leslie Lamport: Researcher at Microsoft

Paxos Made Simple (2001): Simple description of Paxos
protocol.

6



Classes of Agents

Proposers: Propose values (possibly different) to
acceptors.

Acceptors: Choose a value amongst the proposed
ones.

Learners: Learn the correct chosen value from the
acceptors.

* A process can act as a multi-agent.

7



Single Acceptor

Proposers send proposals to a single Acceptor.

The Acceptor chooses the örst value it receives.

Problem: If the Acceptor fails, further progress is
impossible.

Solution: Utilize multiple Acceptor agents.

8



Multi-Acceptors

In a t fault-tolerant environment, 2t+1 Acceptors
are needed.

Proposers send their proposal to a set of processes,
that consists of the majority of Acceptors.

A value is chosen when at least t+1 Acceptors have
accepted this value.

9



Proposal Format

A proposal consists of a tuple (n, v), where n is a
proposal id and v is the value assigned to this
proposal.

Each proposer has a unique set of proposal ids.

Uniqueness is guaranteed for proposal ids.

10



Invariants

P1: An Acceptor must accept the örst proposal that
it receives.

Problem: If an Acceptor accepts only one value,
then there are scenarios where consensus is
impossible.

Solution: An Acceptor must accept multiple values.

11



Invariants

P1: An Acceptor must accept the örst proposal that
it receives.

Problem: If an Acceptor accepts only one value,
then there are scenarios where consensus is
impossible.

Solution: An Acceptor must accept multiple values.

11



Invariants

P1: An Acceptor must accept the örst proposal that
it receives.

Problem: If an Acceptor accepts only one value,
then there are scenarios where consensus is
impossible.

Solution: An Acceptor must accept multiple values.

11



Invariants
P2: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n chosen, the value must be
v.

⇑
P2a: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n accepted, the value must be
v.

⇑
P2b: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n issued by any proposer the
value must be v.

11



Invariants
P2: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n chosen, the value must be
v.

⇑
P2a: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n accepted, the value must be
v.

⇑
P2b: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n issued by any proposer the
value must be v.

11



Invariants
P2: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n chosen, the value must be
v.

⇑
P2a: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n accepted, the value must be
v.

⇑
P2b: If a proposal (n, v) is chosen, then for every
proposal with id n′ > n issued by any proposer the
value must be v.

11



Invariants

P2c: For any proposal (n, v), there is a set S
consisting of a majority of Acceptors such that one
of the following is true.
(a) No Acceptor in S has accepted any proposal with

number n′ < n.
(b) The value v is the value of the highest-numbered

proposal among all proposals with number n′ < n
accepted by the acceptors in S.

⇓
P2

11



Invariants

P2c: For any proposal (n, v), there is a set S
consisting of a majority of Acceptors such that one
of the following is true.
(a) No Acceptor in S has accepted any proposal with

number n′ < n.
(b) The value v is the value of the highest-numbered

proposal among all proposals with number n′ < n
accepted by the acceptors in S.

⇓
P2

11



Synod Algorithm

Phase 1: Prepare
(a) A Proposer selects a proposal number n and sends a

prepare request with number n to a majority of
Acceptors.

(b) If an Acceptor receives a prepare request with number n
greater than the greatest proposal number it has ever
responded to, then it doesn’t respond to proposals with
number less than n and replies with the
highest-numbered proposal that it has accepted.

12



Synod Algorithm

Phase 2: Accept
(a) If the proposer receives a response from majority of

acceptors, it sends an accept request with (n, v), where v
is the highest value in the responses or any value if none
responded with a value.

(b) If an Acceptor receives a accept request with number n it
accepts the proposal unless it received a prepare request
with number n′ > n.

12



Learners

Learners learn from Acceptors the accepted values
and output the value that is proposed by the
majority of them.

In a t fault-tolerant environment, t+1 Learners are
needed.

Broadcast: All Acceptors forward to all Learners.

13



Optimizations
Basic Paxos

Proposers

P1

P2

Acceptors

A1

A2

A3

Learners

L1

L2

14



Optimizations
Basic Paxos with distinguished Proposer (Leader)

Proposers

P1

P2

Acceptors

A1

A2

A3

Learners

L1

L2

14



Optimizations

In case that Leader fails:

The protocol must elect a new Leader. Is this
another consensus problem?

After the failed processor recovers it might
continue to act as a Leader. This may lead to
multiple Leaders.

The protocol runs safely even with multiple Leaders

14



Optimizations
Basic Paxos with distinguished Learner (Leader)

Proposers

P1

P2

Acceptors

A1

A2

A3

Learners

L1

L2

14



Example

Proposers

P1

Prepare(1)

P2

Acceptors

A1:null

A2:null

A3:null

Learners

L1

L2

15



Example

Proposers

P1

P2

Acceptors

A1:1

Promise(1, null)

A2:1

Promise(1, null)

A3:1

Promise(1, null)

Learners

L1

L2

15



Example

Proposers

P1

Accept(1, v)

P2

Acceptors

A1:1

A2:1

A3:1

Learners

L1

L2

15



Example

Proposers

P1

P2

Acceptors

A1:1

Accepted(1, v)

A2:1

Accepted(1, v)

A3:1

Accepted(1, v)

Learners

L1

L2

15



Progress

Proposers

P1

P2

Acceptors

A1

A2

A3

Learners

L1

L2

16



Progress

Proposers

P1

Prepare(1)

P2

Acceptors

A1:null

A2:null

A3:null

Learners

L1

L2

16



Progress

Proposers

P1

P2

Acceptors

A1:1

Promise(1,null)

A2:1

Promise(1,null)

A3:1

Promise(1,null)

Learners

L1

L2

16



Progress

Proposers

P1

P2

Prepare(2)

Acceptors

A1:1

A2:1

A3:1

Learners

L1

L2

16



Progress

Proposers

P1

P2

Acceptors

A1:2

Promise(2,null)

A2:2

Promise(2,null)

A3:2

Promise(2,null)

Learners

L1

L2

16



Progress

Proposers

P1

Accept(1, v1)

P2

Acceptors

A1:2

A2:2

A3:2

Learners

L1

L2

16



Progress

Proposers

P1

Prepare(3)

P2

Acceptors

A1:2

A2:2

A3:2

Learners

L1

L2

16



Progress

Proposers

P1

P2

Acceptors

A1:3

Promise(3,null)

A2:3

Promise(3,null)

A3:3

Promise(3,null)

Learners

L1

L2

16



Progress

Proposers

P1

P2

Accept(2, v2)

Acceptors

A1:3

A2:3

A3:3

Learners

L1

L2

16



Progress

Theoretically: Asynchronous environment and
crash failure model lead to no Progress.
Impossibility of Distributed Consensus with One
Faulty Process (1983)

Practically: Countermeasures can be taken to
avoid this domino effect.

I randomized timeouts
I failure detection

16



Implementation of Paxos

How the leaders are elected?

What happens when multiple requests are
spawned?

How I get rid of redundant data?

How do I achieve liveness requirement?

17



Paxos Made Moderately Complex
Robbert Van Renesse: Research Scientist at Cornell

Paxos Made Moderately Complex (2011): Difficulties in
implementation of Paxos protocol.

18



State Machine

Collection of states.

Collection of transitions between states.

Current state.

Deterministic: For any state and operation the
transition is unique.

SMR:Masks failures via replication. It is assumed that at
least one replica never crashes.

19



Problem

Multiple clients

⇓
Multiple concurrent commands are executed with
different order at the replicas.

⇓
Replicas make different transitions and are
inconsistent with each other.

Solution: Utilize Synod algorithm to agree on the order
of commands.

20



Problem

Multiple clients
⇓

Multiple concurrent commands are executed with
different order at the replicas.

⇓
Replicas make different transitions and are
inconsistent with each other.

Solution: Utilize Synod algorithm to agree on the order
of commands.

20



Problem

Multiple clients
⇓

Multiple concurrent commands are executed with
different order at the replicas.

⇓
Replicas make different transitions and are
inconsistent with each other.

Solution: Utilize Synod algorithm to agree on the order
of commands.

20



Problem

Multiple clients
⇓

Multiple concurrent commands are executed with
different order at the replicas.

⇓
Replicas make different transitions and are
inconsistent with each other.

Solution: Utilize Synod algorithm to agree on the order
of commands.

20



Clients

Clients make requests of type (k, cid, op).
I k -> client unique id
I cid -> command id
I op -> operation to be performed

They wait until they get a response.

Clients should not be able to witness SMR model
with failures. Instead, the system must behave like
a single SM without failures.

21



Classes of agents

Replicas: They are t+1 processes that guarantee t
fault tolerance. They interact with the Clients.

Leaders: They are placed between Replicas and
Acceptors.

I Scouts: execute örst phase of Paxos.
I Commanders: execute second phase of Paxos.

Acceptors: They are 2t+1 processes. The majority is
needed in order to reach a decision.

22



Slots and Ballots
Slots

contain commands in the order of execution
each slot contains a unique command
each command can be in multiple slots

Ballots
there are tuples (λ, id)where λ is the Leader they
belong to and id is a unique number for the ballot

PValues
triple (b, s, p)where b is a ballot, s is a slot and p is
the proposed command

23



24



Liveness

Problem: Liveness is not guaranteed.

Weaken Assumptions: There is a bound
I in clock drifts
I in communication time between two non-faulty

processes

Solutions:
I failure detection
I TCP-like timeout mechanism

25



State Reduction

Acceptors keep the highest PValues for each slot.

Acceptors sent information only for slots that are
undecided.

Replicas can keep only the requests higher to their
slot_num.

Leaders spawn Commanders only for undecided
slots.

26



Garbage Collection
Acceptors do not need to keep PValues for slots
that have been updated to all Replicas.

A faulty Replica can stall the garbage collection.

Have 2t+ 1 Replicas instead of t+ 1. Acceptors
erases the PValue when more than t Replicas have
performed the corresponding command.

A recovered Replica which is not able to learn a
particular command will get a snapshot of the state
of another Replica.

27



Co-location
In practice, the Leaders are usually co-located with
the Replicas.

A Replica instead of broadcasting it sends the
proposal to the local Leader. If Leader is active it
spawns a Commander to handle the proposal. If
not it sends the message to another active Leader
(monitor).

Avoid the expense of the Broadcast.

Other scenarios of co-locations are possible, as well.
28



Read-only Commands

Read operations do not change the state of
Replicas. So, we don’t need consensus.

Use leases mechanism in order to be certain that an
update is not going to happen from the other
Leader.

If the Leader has the lease it can attach read-only
commands to the highest slot number.

29



Multi-Paxos

One Leader fairly stable.

Skip prepare request after the örst one.

Instead of 4 messages delay we have 2 in the usual
case.

30



Cheap-Paxos

We have t+1 main Acceptors and t auxiliary
Acceptors.

Dynamic reconöguration after failures.

When system is stable the protocol is better.

The systemmust halt when toomany failures occur.
(delay for reconöguration)

31



Fast-Paxos
Requests are made directly to all Acceptors.

Response to requests goes to Learners and to a
single Leader.

The single Leader detects collisions and solves
them with a new accept request.

If there is not any collision, we have only 2
messages delay instead of 4.

When collisions happen, we have 4 messages delay,
which is the same with the basic Paxos.

32



Generalized-Paxos

Partial order of events. Some operations can run
concurrently.

For some applications it is faster than Fast-Paxos
algorithm.

33



Byzantine-Paxos

Non-Byzantine processors assumption is erased.

Extra replications are needed for guaranteed
correctness.

Fast-Paxos can be integrated to make it even faster
(Fast-Byzantine-Paxos).

Many different versions of the protocol are proposed in
literature.

34



Discussion

Is Paxos implementation simple?

Are there ways to weaken the assumptions
realistically and obtain more performance gains?

Is Paxos the only solution?

35



End of Presentation

Thank you!!!

36


	Definition of the Problem
	Paxos Made Simple
	Paxos Made Moderately Complex
	Different Types of Paxos
	Discussion

