Consensus in Distributed Systems

Gkountouvas Theodoros
tg294@cornell.edu

Advanced Systems (CS6410)

Department of Computer Science
Cornell University

October 25,2012



Presentation

@ Definition of the Problem

a Paxos Made Simple

e Paxos Made Moderately Complex
@ Different Types of Paxos

e Discussion



Consensus Meaning

@ In Real World: A group of people reaches an
agreement after discussion.

@ In Distributed Systems: A group of process agrees
on a specific value.



Safety Requirements

@ Only a value that has been proposed may be
chosen.

@ Only asingle value is chosen.

@ The majority processes learn that the same value is
chosen.



Assumptions

@ Asynchronous environment

» no bounds on timing characteristics
» clocks run arbitrarily fast
» message communication takes arbitrarily long

@ Crash failures
» processes just halt in case of failure

@ Reliable links
» messages will eventually be delivered
» messages can be duplicated and reordered
» communication is not corrupted



Paxos
Leslie Lamport: Researcher at Microsoft

H
B

Tz

Paxos Made Simple (2001): Simple description of Paxos
protocol.



Classes of Agents

@ Proposers: Propose values (possibly different) to
acceptors.

@ Acceptors: Choose a value amongst the proposed
ones.

@ Learners: Learn the correct chosen value from the
acceptors.

* A process can act as a multi-agent.



Single Acceptor

@ Proposers send proposals to a single Acceptor.
@ The Acceptor chooses the first value it receives.

@ Problem: If the Acceptor fails, further progress is
impossible.

@ Solution: Utilize multiple Acceptor agents.



Multi-Acceptors

@ In atfault-tolerant environment, 2t+1 Acceptors
are needed.

@ Proposers send their proposal to a set of processes,
that consists of the majority of Acceptors.

@ Avalueis chosen when at least t+1 Acceptors have
accepted this value.



Proposal Format

@ A proposal consists of a tuple (n,v), where nis a
proposal id and v is the value assigned to this
proposal.

@ Each proposer has a unique set of proposal ids.

@ Uniqueness is guaranteed for proposal ids.

10



Invariants

@ P1: An Acceptor must accept the first proposal that
it receives.

1



Invariants

@ P1: An Acceptor must accept the first proposal that
it receives.

@ Problem: If an Acceptor accepts only one value,
then there are scenarios where consensus is
impossible.

1



Invariants

@ P1: An Acceptor must accept the first proposal that
it receives.

@ Problem: If an Acceptor accepts only one value,
then there are scenarios where consensus is
impossible.

@ Solution: An Acceptor must accept multiple values.

1



Invariants

@ P2:If a proposal (n,v) is chosen, then for every
proposal with id n” > n chosen, the value must be
V.

1



Invariants

@ P2:If a proposal (n,v) is chosen, then for every
proposal with id n” > n chosen, the value must be
V.

T
@ P2a: If a proposal (n,v) is chosen, then for every
proposal withiid n" > n accepted, the value must be
V.

1



Invariants

@ P2:If a proposal (n,v) is chosen, then for every
proposal with id n” > n chosen, the value must be
V.

i

@ P2a: If a proposal (n,v) is chosen, then for every
proposal withiid n" > n accepted, the value must be
V.

i

@ P2b: If a proposal (n, v) is chosen, then for every
proposal with id n’ > nissued by any proposer the
value must be v.

1



Invariants

@ P2c: For any proposal (n,v), thereisaset S
consisting of a majority of Acceptors such that one
of the following is true.

(@) No Acceptorin S has accepted any proposal with
number n’ < n.

(b) The value vis the value of the highest-numbered
proposal among all proposals with numbern’ < n
accepted by the acceptorsin S.

1



Invariants

@ P2c: For any proposal (n,v), thereisaset S
consisting of a majority of Acceptors such that one
of the following is true.

(@) No Acceptorin S has accepted any proposal with
number n’ < n.

(b) The value vis the value of the highest-numbered
proposal among all proposals with numbern’ < n
accepted by the acceptorsin S.

4
P2

1



Synod Algorithm

@ Phase 1: Prepare
(@) A Proposer selects a proposal number n and sends a

prepare request with number n to a majority of
Acceptors.

If an Acceptor receives a prepare request with number n
greater than the greatest proposal number it has ever
responded to, then it doesn’t respond to proposals with
number less than n and replies with the
highest-numbered proposal that it has accepted.

12



Synod Algorithm

@ Phase 2: Accept

(a)

If the proposer receives a response from majority of
acceptors, it sends an accept request with (n,v), where v
is the highest value in the responses or any value if none
responded with a value.

If an Acceptor receives a accept request with number n it
accepts the proposal unless it received a prepare request
with number n’ > n.

12



Learners

@ Learners learn from Acceptors the accepted values
and output the value that is proposed by the
majority of them.

@ In at fault-tolerant environment, t+1 Learners are
needed.

@ Broadcast: All Acceptors forward to all Learners.

13



Optimizations
Basic Paxos

Acceptors

Proposers Learners

- - P -
- . N ~<
- N -
- . -
~
.
. N
L N
- N -
- . -
-~ N -
~ 7 .-
N - o _-> .
. ~ - .
N - - N
~ 4 = - ~ 4
N N
s N - s N
N - - ~
. N - - .
. - -~ _- N
->7 >Z ~
- ->< ~
- - ~ <
- N -
~ s -~
.
N
.
~
. -
- N -
-~ . -
- N . -
-~ N -

14



Optimizations
Basic Paxos with distinguished Proposer (Leader)

Acceptors

Proposers Learners

14



Optimizations
In case that Leader fails:

@ The protocol must elect a new Leader. Is this
another consensus problem?

@ After the failed processor recovers it might
continue to act as a Leader. This may lead to
multiple Leaders.

@ The protocol runs safely even with multiple Leaders

14



Optimizations
Basic Paxos with distinguished Learner (Leader)

Acceptors

Proposers Learners

14



Example

Acceptors
Proposers Learners
Prepare(1)
P1

vo

-7 .
- .
- -
-
-
-
-
-
-
.’
-
-
-,
-
-

15



Example

Acceptors
Proposers Promise(1, null) Learners
Pl /ngu) B

Promise(1, null) -~ ’

-

15



Example

Acceptors

Proposers
Accept(1, v)
P1

‘e

-

Learners

- -
- 4
- 7z

-
-
.
-
-

.

-

-

.
.
-

15



Example

Proposers

Acceptors

Accepted(1, v)

Learners

15



Progress

Acceptors

Proposers Learners

- - =~
- . ~~.
- P ~ -
-
-
- -
-~ . -
S~o - -
EES - .
N - ~~. - -
~ . - - -
N -,
>Q -,
- - -
. S - -
- N .
-> -
- ~ -
- ~ .
N -
N -
~ -
~ < ~ -
T~< N -
- ~

16



Progress

Acceptors

Proposers Learners

Prepare(1 )/‘

16



Progress

Acceptors
Proposers Promise(1,null) Learners
Pl 49(1“11) B

16



Progress

Proposers

Acceptors

Learners

16



Progress

Acceptors

Proposers Promise(2,null) Learners

::::f@
()

“~ Promise(2, null) e

e

16



Progress

Acceptors
Proposers Learners

Accept(1, v1)

16



Progress

Proposers

Prepare(3)

Acceptors

Learners

16



Progress

Acceptors
Proposers Promise(3,null) Learners
Pl 49(3“11) B

16



Progress

Acceptors

Proposers Learners

16



Progress

@ Theoretically: Asynchronous environment and
crash failure model lead to no Progress.
Impossibility of Distributed Consensus with One
Faulty Process (1983)

@ Practically: Countermeasures can be taken to
avoid this domino effect.

» randomized timeouts
» failure detection

16



Implementation of Paxos

@ How the leaders are elected?

@ What happens when multiple requests are
spawned?

@ How | get rid of redundant data?

@ How do | achieve liveness requirement?

17



Paxos Made Moderately Complex

Robbert Van Renesse: Research Scientist at Cornell

Paxos Made Moderately Complex (2011): Difficulties in
implementation of Paxos protocol.

18



State Machine

@ Collection of states.
@ Collection of transitions between states.

@ Current state.

Deterministic: For any state and operation the
transition is unique.

SMR: Masks failures via replication. It is assumed that at
least one replica never crashes.

19



Problem

@ Multiple clients

20



Problem

@ Multiple clients

4

@ Multiple concurrent commands are executed with
different order at the replicas.

20



Problem

@ Multiple clients

4

@ Multiple concurrent commands are executed with
different order at the replicas.

4

@ Replicas make different transitions and are
inconsistent with each other.

20



Problem

@ Multiple clients

4

@ Multiple concurrent commands are executed with
different order at the replicas.

4

@ Replicas make different transitions and are
inconsistent with each other.

Solution: Utilize Synod algorithm to agree on the order
of commands.

20



Clients

@ Clients make requests of type (k, cid, op).

» k->client unique id
» cid->command id
» op -> operation to be performed

@ They wait until they get a response.

@ Clients should not be able to witness SMR model
with failures. Instead, the system must behave like
a single SM without failures.

21



Classes of agents

@ Replicas: They are t+1 processes that guarantee t
fault tolerance. They interact with the Clients.

@ Leaders: They are placed between Replicas and
Acceptors.

» Scouts: execute first phase of Paxos.
» Commanders: execute second phase of Paxos.

@ Acceptors: They are 2t+1 processes. The majority is
needed in order to reach a decision.

22



Slots and Ballots
Slots
@ contain commands in the order of execution
@ each slot contains a unique command
@ each command can be in multiple slots

Ballots

@ there are tuples (), id) where ) is the Leader they
belong to and id is a unique number for the ballot

PValues

@ triple (b, s, p) where bis a ballot, sis a slotand p is
the proposed command

23



client

replicas

K P1 P2

request

decision

leaders

commander

acceptors

oy oy

24



Liveness

@ Problem: Liveness is not guaranteed.

@ Weaken Assumptions: There is a bound

» in clock drifts
» in communication time between two non-faulty
processes

@ Solutions:

» failure detection
» TCP-like timeout mechanism

25



State Reduction

@ Acceptors keep the highest PValues for each slot.

@ Acceptors sent information only for slots that are
undecided.

@ Replicas can keep only the requests higher to their
slot_num.

@ Leaders spawn Commanders only for undecided
slots.

26



Garbage Collection

@ Acceptors do not need to keep PValues for slots
that have been updated to all Replicas.

@ A faulty Replica can stall the garbage collection.

@ Have 2t + 1 Replicas instead of t + 1. Acceptors
erases the PValue when more than t Replicas have
performed the corresponding command.

@ A recovered Replica which is not able to learn a
particular command will get a snapshot of the state
of another Replica.

27



Co-location

@ In practice, the Leaders are usually co-located with
the Replicas.

@ A Replicainstead of broadcasting it sends the
proposal to the local Leader. If Leader is active it
spawns a Commander to handle the proposal. If
not it sends the message to another active Leader
(monitor).

@ Avoid the expense of the Broadcast.

@ Other scenarios of co-locations are possible, as well.

28



Read-only Commands

@ Read operations do not change the state of
Replicas. So, we don't need consensus.

@ Use leases mechanism in order to be certain that an
update is not going to happen from the other
Leader.

@ If the Leader has the lease it can attach read-only
commands to the highest slot number.

29



Multi-Paxos

@ One Leader fairly stable.
@ Skip prepare request after the first one.

@ Instead of 4 messages delay we have 2 in the usual
case.

30



Cheap-Paxos

@ We have t+1 main Acceptors and t auxiliary
Acceptors.

@ Dynamic reconfiguration after failures.

@ When system is stable the protocol is better.

@ The system must halt when too many failures occur.

(delay for reconfiguration)

31



Fast-Paxos
@ Requests are made directly to all Acceptors.

@ Response to requests goes to Learners and to a
single Leader.

@ The single Leader detects collisions and solves
them with a new accept request.

@ If there is not any collision, we have only 2
messages delay instead of 4.

@ When collisions happen, we have 4 messages delay,

which is the same with the basic Paxos.
32



Generalized-Paxos

@ Partial order of events. Some operations can run
concurrently.

@ For some applications it is faster than Fast-Paxos
algorithm.

33



Byzantine-Paxos

@ Non-Byzantine processors assumption is erased.

@ Extra replications are needed for guaranteed
correctness.

@ Fast-Paxos can be integrated to make it even faster
(Fast-Byzantine-Paxos).

Many different versions of the protocol are proposed in
literature.

34



Discussion

@ Is Paxos implementation simple?

@ Are there ways to weaken the assumptions
realistically and obtain more performance gains?

@ |s Paxos the only solution?

35



End of Presentation

Thank you!!!

36



	Definition of the Problem
	Paxos Made Simple
	Paxos Made Moderately Complex
	Different Types of Paxos
	Discussion

