Consensus

Hao Li

What is consensus?

1 In English
BPeople have different ideas
BThey reach agreement after discussion: consensus
BGliven consensus, one idea is chosen

} In computer science

BDistributed system 0 processes propose different
values

BEventually (hopefully), reach agreement on one
value: consensus

BGiven consensus, one value is learnt

Why consensus?

BSystem replicated for fault - tolerance
1 Every replica has to see same value for consistency

But how?

1 Achieve consensus?
BOnly one value is chosen

» Fault- tolerance?
BChose value Iin case of failure

. Proceed?
BGuarantee eventually a value is chosen

Background - Failure Model

1 Falil- stop model

B Process stops participating in the distributed system
B Can be reliably detected

v Fall- crash model

B Process stops participating in the distributed system
BCandot be detected. May be jJust

1 Byzantine failure model
B Process behaves in an arbitrary fashion
B May result from software bugs or attacks

Background - System Model

} Synchronous system

BHave bounds on message delays and process step
BHave common clock or synchronous clocks

1 Asynchronous system
BNo bounds on message delays and process step
BExample: Internet!

Paxos Made Simple

Leslie Lamportt

.

Leslie Lamport

1 Researcher in Microsoft

} Best known for
BTime, clock, ordering in distributed system
BByzantine fault tolerance
BPaxos Algorithm

v Author of LaTex!

Picture from Wikipedia

Problem

} Assume a collection of processes that can
propose values . A consensus algorithm
ensures that a single one among the
proposed values is chosen . .

From Robert o c

Requirements

1 Safety requirements

BOnly proposed value can be chosen
BOnly a single value can be chosen
BlLearn the value if it is indeed chosen

} Liveliness requirements
BSome value is eventually chosen
BBut wondot try to specifye

Agents
+ Proposers : Propose values
1 Acceptors : Choose values

1 Learners : Learn the eventually chosen value

1 Note that one process can act as multiple
agents!

Assumptions

1 Failure model
BNon - Byzantine model

1 Asynchronous model
BNo common clocks
BAgents in arbitrary speed
BMessages take arbitrarily long time
BMessages can be duplicated and lost

1 Permanent storage
BRemember information after fail/restart!

Start to develop the algorithm!

One simple idea: use a single acceptor

BFeasible
BBut cannot proceed in case of failure

Multi-acceptors

Choose a value even we have one proposer and one proposal
This suggests:

P1. An acceptor must accept the first proposal that it receives

Send proposals to majority to make sure single value is
chosen

Majority (quorum): (N /2 + 1) (N is the number of acceptors)
Any two majorities overlap

Proposal Number

1 Accept only one proposal?
BFailure makes it hard to choose a value

1 S0, acceptors have to accept more than one
proposals (but they are the same)

; Distinguish proposals
BGive them unigue number
BHow to achieve this???

Choose one value

One value is chosen

I

P2: If a proposal with value v is chosen, every higher numbered
proposal thatis chosen has value v

|

P22; If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

I

P2P: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value '}

Satisfy P2b

1 A value v Is chosen by majority
BA proposer wants to propose with higher numbered
proposal
Blt needs to propose v

Blt can send request to majority to check if any value
IS accepted

Blt will know v since majorities overlap

P2¢€

P2c: For any v and n, if a proposal with value v and

number n is issued, then there is a set S consisting of

majority of acceptors such that either:

(&) No acceptor in S has accepted any proposal numbered
less than n

(b)v is the value of the highest - numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S

Satisfy P2¢

1 A proposer wants to issue proposal with
number n needs to know:

BIf proposal with highest number less than n will be
accepted or already accepted

BKnow already accepted is easy

BPredicting is hard

1 Alternatives

BGet promise from acceptor that it will not accept
proposal number less n

Paxos Algorithm

1 Phase 1 (Prepare)

B(a) A proposer sends a prepare request with number nto
majority of acceptors

B (b) If the number n seen by an acceptor is not highest,
the request is ignored. Else, acceptor return a promise
not to accept any request with
chose a value)

1 Phase 2 (Accept)

B (a) If the proposer receives a response from majority of
acceptors, it sends an acceptrequest wi t h val ue v

B (b) If an acceptor receives an accept request with
number n, it accepts the value unless it has responded
to another prepare request having higher proposal
number

Acceptor Failure

+ Acceptor can fail/restart, but it should have
persistent storage to remember highest
number and highest number promises. Why?

1 Example:

3 Acceptors: A, B, C. A, B accepted value v with
number n.

Then A crashed and restarted. If it forgot n, a

proposal with number n -1 can be accepted by C
and A.

Learning a chosen value

1 Acceptors respond to all learners

1+ Acceptors respond to distinguished learner(s)

1 Failure of a acceptor

BLearners cannot find chosen value since no majority
BlLearn the next chosen value

Progess?

1 Consider the following scenario:

B P1 sends prepare request with number n1 (promised)

B P2 sends prepare request with number n2 > nl1 (promised)
B P1 sends accept request with number nl (rejected)

B P1 sends prepare request with number n3 > n2 (promised)

B P2 sends accept request with number n2 (rejected)
Beé é .

Distinguished Proposer

1 Only make proposal by distinguished
proposer

+ But what If this proposer fails?
BElect a new one?
BBut thi s 1 s anot her consens.|

BCan result in multi - distinguished proposers
BAlgorithm still correct

Discussion

;0SI mpl ed

BPresented in a way that show the steps of solving
the problem

BAlgorithm itself is easy to understand and
Implement

1 Achieve consensus with fault tolerant
BProceed with f failures from 2*f+1 processes

1 But cannot guarantee progress
BWhy???

Michael Fischer Nancy Lynch Michael Patterson

