

Hao Li

}In English
ƁPeople have different ideas

ƁThey reach agreement after discussion: consensus

ƁGiven consensus, one idea is chosen

}In computer science
ƁDistributed system ð processes propose different

values

ƁEventually (hopefully), reach agreement on one
value: consensus

ƁGiven consensus, one value is learnt

ƁSystem replicated for fault - tolerance

¶Every replica has to see same value for consistency

}Achieve consensus?
ƁOnly one value is chosen

}Fault - tolerance?
ƁChose value in case of failure

}Proceed?
ƁGuarantee eventually a value is chosen

}Fail- stop model
ƁProcess stops participating in the distributed system

ƁCan be reliably detected

}Fail- crash model
ƁProcess stops participating in the distributed system

ƁCanõt be detected. May be just slow but not stopped.

}Byzantine failure model
ƁProcess behaves in an arbitrary fashion

ƁMay result from software bugs or attacks

}Synchronous system
ƁHave bounds on message delays and process step

ƁHave common clock or synchronous clocks

}Asynchronous system
ƁNo bounds on message delays and process step

ƁExample: Internet!

Leslie Lamport

}Researcher in Microsoft

}Best known for
ƁTime, clock, ordering in distributed system

ƁByzantine fault tolerance

ƁPaxos Algorithm

}Author of LaTex!

Picture from Wikipedia

}Assume a collection of processes that can
propose values . A consensus algorithm
ensures that a single one among the
proposed values is chosen . . .

From Robertõs slide

}Safety requirements
ƁOnly proposed value can be chosen

ƁOnly a single value can be chosen

ƁLearn the value if it is indeed chosen

}Liveliness requirements
ƁSome value is eventually chosen

ƁBut wonõt try to specifyé

}Proposers : Propose values

}Acceptors : Choose values

}Learners : Learn the eventually chosen value

}Note that one process can act as multiple
agents!

}Failure model
ƁNon- Byzantine model

}Asynchronous model
ƁNo common clocks
ƁAgents in arbitrary speed
ƁMessages take arbitrarily long time
ƁMessages can be duplicated and lost

}Permanent storage
ƁRemember information after fail/restart!

 One simple idea: use a single acceptor

ƁFeasible

ƁBut cannot proceed in case of failure

 Choose a value even we have one proposer and one proposal

 This suggests:

 Send proposals to majority to make sure single value is
chosen

 Majority (quorum): (N / 2 + 1) (N is the number of acceptors)

 Any two majorities overlap

P1. An acceptor must accept the first proposal that it receives

}Accept only one proposal?
ƁFailure makes it hard to choose a value

}So, acceptors have to accept more than one
proposals (but they are the same)

}Distinguish proposals
ƁGive them unique number

ƁHow to achieve this???

One value is chosen

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v

}A value v is chosen by majority
ƁA proposer wants to propose with higher numbered

proposal

ƁIt needs to propose v

ƁIt can send request to majority to check if any value
is accepted

ƁIt will know v since majorities overlap

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of
majority of acceptors such that either:
(a)No acceptor in S has accepted any proposal numbered

less than n
(b)v is the value of the highest - numbered proposal

among all proposals numbered less than n accepted
by the acceptors in S

}A proposer wants to issue proposal with
number n needs to know:
ƁIf proposal with highest number less than n will be

accepted or already accepted

ƁKnow already accepted is easy

ƁPredicting is hard

}Alternatives
ƁGet promise from acceptor that it will not accept

proposal number less n

}Phase 1 (Prepare)
Ɓ(a) A proposer sends a prepare request with number n to

majority of acceptors
Ɓ(b) If the number n seen by an acceptor is not highest,

the request is ignored. Else, acceptor return a promise
not to accept any request with smaller n with value võ (if
chose a value)

}Phase 2 (Accept)
Ɓ(a) If the proposer receives a response from majority of

acceptors, it sends an accept request with value v or võ
Ɓ(b) If an acceptor receives an accept request with

number n, it accepts the value unless it has responded
to another prepare request having higher proposal
number

}Acceptor can fail/restart, but it should have
persistent storage to remember highest
number and highest number promises. Why?

}Example:
3 Acceptors: A, B, C. A, B accepted value v with

number n.

Then A crashed and restarted. If it forgot n, a
proposal with number n - 1 can be accepted by C
and A.

}Acceptors respond to all learners

}Acceptors respond to distinguished learner(s)

}Failure of a acceptor
ƁLearners cannot find chosen value since no majority

ƁLearn the next chosen value

}Consider the following scenario:
ƁP1 sends prepare request with number n1 (promised)

ƁP2 sends prepare request with number n2 > n1 (promised)

ƁP1 sends accept request with number n1 (rejected)

ƁP1 sends prepare request with number n3 > n2 (promised)

ƁP2 sends accept request with number n2 (rejected)

Ɓéé.

}Only make proposal by distinguished
proposer

}But what if this proposer fails?
ƁElect a new one?

ƁBut this is another consensus problemé

ƁCan result in multi - distinguished proposers

ƁAlgorithm still correct

}òSimpleó
ƁPresented in a way that show the steps of solving

the problem

ƁAlgorithm itself is easy to understand and
implement

}Achieve consensus with fault tolerant
ƁProceed with f failures from 2*f+1 processes

}But cannot guarantee progress
ƁWhy???

 Michael Fischer Nancy Lynch Michael Patterson

