Virtual Synchrony

Ki Suh Lee

Some slides are borrowed from Ken, Jared
(cs6410 2009) and Justin (cs614 2005)

The Process Group Approach to
Reliable Distributed Computing

* Ken Birman
— Professor, Cornell University

— Isis
— Quicksilver
— Live Object

Understanding the Limitations
of Causally and Totally Ordered
Communication

 David Cheriton
— Stanford
— PhD — Waterloo

— Billionaire

* Dale Skeen
— PhD — UC Berkeley
— Distributed pub/sub communication
— 3-phase commit protocol

Recap...

End-to-End Argument
Multicast
Partial/Total Ordering

— Happens-before relation
Logical/Physical Clocks
Distributed snapshop

Consensus

Recap

* Asynchronous vs. synchronous

* Failure model
— Crash-stop (fail-stop) Failures
— Byzantine Failures

Distributed computing

e 1978 Lamport’s

/

Time, Clocks, and the Ordering of Events in a
Distributed System”

* 1983 Schneider’s State machine replication

e 1985 FLP’s the impossibility of asynchronous
fault-tolerant consensus

e 1981 transactional serializability (2PC)
e 1021 Nlan_hlAarckinoc 2ADC

Motivation

* Distributed system with
— Fault-tolerance
— Reliability
— Easy programmability

Virtual Synchrony

* |n the early 1980’s

* Keyidea: equate “group” with “data
abstraction”
— Each group implements some object

— An application can belong to many groups

Virtual Synchrony

The user sees what looks like a synchronous
execution

— Simplifies the developer’s task

Process groups with state transfer, automated
fault detection and membership reporting

Ordered reliable multicast, in several flavors
Extremely good performance

Historical Aside

* |sis (Virtual synchrony)
— Weaker properties — not quite “FLP consensus”
— Much higher performance (orders of magnitude)
— Simple Dynamic membership control

* Paxos (state machine)
— Closer to FLP definition of consensus
— Slower (by orders of magnitude)

— Sometimes can make progress in partitioning
situations where virtual synchrony can’t

— Complex dynamic membership control

Programming with groups

 Many systems just have one group
— E.g. replicated bank servers
— Cluster mimics one highly reliable server

* But we can also use groups at finer granularity
— E.g. to replicate a shared data structure
— Now one process might belong to many groups

e A further reason that different processes might see
different inputs and event orders

ISIS

Assumptions

Fail-stop model

Clocks are not synchronized
Unreliable network
Network partitions is rare
Failure detection subsystem

— Consistent system-wide view

Difficulties

Conventional message passing technologies
— TCP, UDP, RPC, ...

Group addressing

Logical time and causal dependency
Message delivery ordering

State transfer (membership change)
Fault tolerance

No Reliable Multicast

Ideal

Reality

(il

/

N

18

X

* |

« UDP, TCP, Multicast not good enough
 What is the correct way to recover?

Membership Churn

Receives new membership

({7 W\ \

[—

Never sent

* Membership changes are not instant
* How to handle failure cases?

Message Ordering

2

2.y

3l W N%{/ /\NR

=

 Everybody wants it!
* How can you know if you have it?
* How canyou get it?

State Transfers

S

* New nodes must get current state
* Does not happen instantly
 How do you handle nodes failing/joining?

Failure Atomicity

Ideal Reality

qr \ &/' Jﬁ*\ """"""" }

* Nodes can fail mid-transmit
 Some nodes receive message, others do not
* Inconsistencies arise!

Process Groups

e Distributed groups of cooperating programs
* Pub/sub style of interaction

* Requirements
— Group communication
— Group membership as input
— Synchronization

Process Groups

* Anonymous group
— Group addressing
— All or none delivery
— Message Ordering

e Explicit group
— Members cooperate directly
— Consistent views of group membership

Process groups

* The group view gives a simple leader election
rule

* A group can easily solve consensus
* A group can easily do consistent snapshot

Close Synchrony

* Lock-step execution model

— Implementing synchronous model in
asynchronous environment

— Order of events is preserved
— A multicast is delivered to its full membership

Close Synchrony

|

o

Close Synchrony

* Not practical
— Impossible in the presence of failures

— Expensive

 We want close synchrony with high
throughput.

=> Virtual Synchrony

Virtual Synchrony

* Relax synchronization requirements where
possible

— Different orders among concurrent events won'’t
matter as long as they are delivered.

Asynchronous Execution

i

\

\

=

\

|

b

A

ABCAST

Atomic delivery ordering
Stronger Ordering, but costly
locking or token passing

Not all applications need this...

CBCAST

Two messages can be sent to concurrently
only when their effects on the group are
independent

If m1 causally precedes m2, then m1 should
be delivered before m2.

Weaker then ABCAST
Fast!

When to use CBCAST?

Each thread corresponds to a different lock

p { ‘ K >
r AN [/] :
s \ \// // \\\ < /)Q / \\\ :
T @ @) % |

* When any conflicting multicasts are uniquely
ordered along a single causal chain

° ... This is Virtual Synchrony

Benefits

* Assuming a closely synchronous execution
model

* Asynchronous, pipelined communication

* Failure handling through a system
membership list

Isis toolkit

* A collection of higher-level mechanisms for
process groups

e Still used in
— New York and Swiss Stock Exchange

— French Air Traffic Control System
— US Navy AEGIS

Problems

* Message delivery is atomic, but not durable
* Incidental ordering

— Limited to ensure communication-level semantics

— Not enough to ensure application-level
consistency.

* Violates end-to-end argument.

Limitations

Can’t say “for sure”

Can’t say the “whole story”
Can’t say “together”

Can’t say “efficiently”

Can’t say “for sure”

e Causal relationships at
semantic level are not

recognizable a A

e External or ‘hidden’ N — st “fire” message
communication ré
channel. Yire out” message sent

|._second “fire"” message sent

last msq received—fire out”

Can’t say “together”, “whole story”

* Serializable ordering, semantic ordering are
not ensured

Theoretic Option User

Pricing Pricing Monitor Monitor Output

25 ', 26 T/, 27
Option price 25.5

Theoretical price 26.75 e | g
S
Option price 26..- <
&
gs
Theoretical price 26.25..........o... ; &)
Option price 26.50 3
Theoretical price 27.0 . 4

\
E
el
‘ -
et z
False crossing due \

to ordering anomaly

Can’t say “efficiently”

* No efficiency gain over state-level techniques
* False Causality
* Not scalable

— Overhead of message reordering
— Buffering requirements grow quadratically

False Causality

Proc. What if m2 happened
R
to follow m1, but was
~m1 sentby Q not causally related?
...mireceived by P
...m2 sent by P
...m2 received by R

Discussion

* Virtual Synchrony good!

* But, not perfect

