
Consensus in Distributed Systems

Impossibility of Distributed Consensus with One Faulty Process
and

Paxos Made Simple



Paxos Made Simple

Leslie Lamport



The Plain English Definition of Consensus

A group of agents want to agree on a common value

They are cautious because they might have different opinions

Consequently, they don’t write down a firm value until
agreement

Once written down, value can’t be changed

We want all agents to eventually write down the same value



Consensus is Everywhere

Lots of examples of consensus in distributed systems:

Primary replica for data object in Bayou

Distributed primary in Pond

Chain replication

Any time you determine a consistent commit ordering

CAP Theorem: Consistency requires consensus



Formal Definition of Consensus

Group of agents: proposers, acceptors, learners

Agents have input/output registers for value

Formal specification for protocol and communication

Safety: no contradiction

Termination: doesn’t run forever



Simple Consensus Protocols

Examples

Single leader

Majority

Node failure can break protocol

Need a failure resilient consensus algorithm!



Possible Failures in Paxos

Asynchronous execution:

Agents operate at arbitrary speed

May fail by stopping and may restart later

Messages can be delayed arbitrarily and delivered out of order

No arbitrary failures



Some other requirements

Want Paxos to be as general as possible, but

Mostly no hardware clocks, but may need these to fix some
issues later.

Need some permanent store across fail/restart.



Safety in Paxos

The criteria for safety in the Paxos algorithm are:

Only a value that has been proposed may be chosen

Only a single value is chosen

A process never learns that a value has been chosen unless it
actually has been

Note the distinction between proposed and chosen.



Requirements

If only a single proposal gets through due to failures, still want
consensus

P1: An acceptor must accept the first proposal it receives

Note the distinction between proposed, accepted, and chosen.

Rely on overlapping majority to make consistent choice.



Requirements

If only a single proposal gets through due to failures, still want
consensus

P1: An acceptor must accept the first proposal it receives

Note the distinction between proposed, accepted, and chosen.

Rely on overlapping majority to make consistent choice.



Numbering Proposals

To distinguish proposals, give every proposal a number.

Numbers have a total order

No two proposals share a number



Requirements

How can we make sure only one value is chosen?



Requirements

Safety: Only one value is chosen

⇑

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

⇑

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

⇑

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v .



Requirements

Safety: Only one value is chosen

⇑

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

⇑

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

⇑

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v .



Requirements

Safety: Only one value is chosen

⇑

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

⇑

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

⇑

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v .



Requirements

Safety: Only one value is chosen

⇑

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

⇑

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

⇑

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v .



Requirements

Safety: Only one value is chosen

⇑

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

⇑

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

⇑

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v .



Requirements

Safety: Only one value is chosen

⇑

P2: If a proposal with value v is chosen, every higher numbered
proposal that is chosen has value v

⇑

P2a: If a proposal with value v is chosen, every higher numbered
proposal accepted by any acceptor has value v

⇑

P2b: If a proposal with value v is chosen, every higher numbered
proposal issued by any proposer has value v .



Towards an algorithm

How could we make P2b hold?

Start with a proposal with value v and number m that gets
chosen.

Let’s think about the next highest proposal that comes in.

It needs to have value v .

Since m chosen, there’s a majority of acceptors accepting it.

If the proposer hears from a majority of acceptors, it will hear
about v .

If it hears about v , it needs to propose it to maintain P2b.



Towards an algorithm

How could we make P2b hold?

Start with a proposal with value v and number m that gets
chosen.

Let’s think about the next highest proposal that comes in.

It needs to have value v .

Since m chosen, there’s a majority of acceptors accepting it.

If the proposer hears from a majority of acceptors, it will hear
about v .

If it hears about v , it needs to propose it to maintain P2b.



Towards an algorithm

How could we make P2b hold?

Start with a proposal with value v and number m that gets
chosen.

Let’s think about the next highest proposal that comes in.

It needs to have value v .

Since m chosen, there’s a majority of acceptors accepting it.

If the proposer hears from a majority of acceptors, it will hear
about v .

If it hears about v , it needs to propose it to maintain P2b.



Towards an algorithm

How could we make P2b hold?

Start with a proposal with value v and number m that gets
chosen.

Let’s think about the next highest proposal that comes in.

It needs to have value v .

Since m chosen, there’s a majority of acceptors accepting it.

If the proposer hears from a majority of acceptors, it will hear
about v .

If it hears about v , it needs to propose it to maintain P2b.



Towards an algorithm

How could we make P2b hold?

Start with a proposal with value v and number m that gets
chosen.

Let’s think about the next highest proposal that comes in.

It needs to have value v .

Since m chosen, there’s a majority of acceptors accepting it.

If the proposer hears from a majority of acceptors, it will hear
about v .

If it hears about v , it needs to propose it to maintain P2b.



Towards an algorithm

How could we make P2b hold?

Start with a proposal with value v and number m that gets
chosen.

Let’s think about the next highest proposal that comes in.

It needs to have value v .

Since m chosen, there’s a majority of acceptors accepting it.

If the proposer hears from a majority of acceptors, it will hear
about v .

If it hears about v , it needs to propose it to maintain P2b.



More Properties

P2c: To make a proposal numbered n with value v , a proposer must
know of a majority S of acceptors such that either

No acceptor in S has accepted anything numbered less than n

v is the value of the highest numbered proposal less than n
accepted by somebody in S



More Properties

P2c: To make a proposal numbered n with value v , a proposer must
know of a majority S of acceptors such that either

No acceptor in S will ever accept anything numbered less
than n

v is the value of the highest numbered proposal less than n
ever accepted by somebody in S



Promises

Instead of trying to predict the future, use promises.

In learning about acceptors, extract a promise that the information
it learns will always be true.

A request for information about requests numbered less than n is
also a contract to never accept any proposals numbered less than n.



Behavior of Proposer

Now, protocol for Proposers/Acceptors is basically fixed:

Proposer picks a proposal number n

Sends prepare request asking for information about proposals
less than n

This is also a promise not to accept new proposals less than n



Behavior of Proposer

If it hears back from a majority, it knows enough information
to apply P2c

If majority hasn’t ever accepted proposals, can pick any value

If someone accepted with some value v , has to re-propose v

The message with a proposal is an accept request



Behavior of Acceptor

An acceptor can do anything it hasn’t promised not to do

It can ignore any request without compromising safety

Can always respond to prepare request

Can respond to accept request if it hasn’t promised otherwise



Note on Failures

P2c needs to be maintained across failure/restart

Solution: Acceptor remembers highest numbered proposal it has
ever accepted, and highest numbered promise it has made, on
permanent storage.



Learning the chosen value

Since value chosen is consistent, learning is easy.

Somehow broadcast acceptances to all learners.

Acceptors could all inform distinguished learner.
Better: acceptors inform small set of learners.



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected
It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected
It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected

It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected
It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected
It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected

It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected
It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Progress

Suppose we have two proposers, p1, p2

p1 sends prepare request numbered n1

p2 sends prepare request numbered n2 > n1

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n3 > n2

p2 sends proposal numbered n2, rejected
It starts again with prepare request numbered n4 > n3

p1 sends proposal numbered n1, rejected
It starts again with prepare request numbered n5 > n4

p2 sends proposal numbered n4, rejected
It starts again with prepare request numbered n6 > n5

...



Distinguished Proposer

Solve the competing proposer problem by having a
distinguished proposer

Single proposer always makes progress if enough components
working.

Single point of failure, so need a way of electing a new
proposer



Wait...

Isn’t that consensus again?



Wishy Washy Solutions

Lamport punts, says to use timeouts, or failure detectors.

There’s actually a good reason for this



Impossibility of Distributed Consensus with One
Faulty Process

Michael Fisher Nancy Lynch Michael Paterson



Motivation

”Window of Vulnerability”

Delay at the wrong time stalls system

Distinguishing between failed process and temporarily slow
process is difficult



The Model: the Good

Want as general a model as possible

Processes are state machines, possibly infinite states

Deterministic

Fail by stopping

Can send arbitrary messages to other machines

Messages uncorrupted



The Model: the Bad

But system is asynchronous

Could take arbitrarily long between actions for process

Could take arbitrarily long to deliver message

Only guarantee delivery if process tries to receive infinitely
many times

Processes have no physical clocks



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅

Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Bunch of Definitions

Configuration: Process states and undelivered messages

Event: Process-message pair. Message can be ∅
Run: Sequence of applicable events, possibly infinite

Deciding run: Some process writes to output register

Partial Correctness: Only one decision value, nontrivial

Faulty process: In a run, only takes finitely many steps

Admissible run: One fault, messages eventually delivered

Totally correct in spite of one fault: Protocol is partially
correct, and every admissible run is deciding



Result

Theorem (Impossibility)

No consensus protocol is totally correct in spite of one fault



Bivalent configurations

Bivalent configuration: Different runs cause protocol to decide
0 and 1

These are ‘indecisive’ configurations

Window of Vulnerability: bad run can be continually indecisive



Lemma 1

There is a bivalent initial configuration



Lemma 2

If we’re at a bivalent configuration C , e is an event we can apply,
and D are the configurations reachable from C doing e last...

... then D has a bivalent configuration.



Meaning of Lemma 2

If we’re sitting at C , and e is about to take us to a non-bivalent
configuration:

e ‘decides’ the protocol (though output may be delayed)

Message or process for e gets delayed

Instead, we do some other events, eventually doing e

Now, we just did e, so we’re in D

Pick ‘other stuff’ appropriately, so that we’re still undecided

That’s the window of vulnerability.



Proof of Theorem

Know that we have to remain undecided. Want an admissible run.

Construct the run by stages

Put the processes in a rotating queue

Grab first process. Look at earliest message (possibly none)

Hit the event e with Lemma 2

End up having delivered message, but still indecisive

Put p at back of queue, repeat

No faulty processes, all messages delivered, but no decision



Proof of Theorem

Know that we have to remain undecided. Want an admissible run.

Construct the run by stages

Put the processes in a rotating queue

Grab first process. Look at earliest message (possibly none)

Hit the event e with Lemma 2

End up having delivered message, but still indecisive

Put p at back of queue, repeat

No faulty processes, all messages delivered, but no decision



Proof of Theorem

Know that we have to remain undecided. Want an admissible run.

Construct the run by stages

Put the processes in a rotating queue

Grab first process. Look at earliest message (possibly none)

Hit the event e with Lemma 2

End up having delivered message, but still indecisive

Put p at back of queue, repeat

No faulty processes, all messages delivered, but no decision



Proof of Theorem

Know that we have to remain undecided. Want an admissible run.

Construct the run by stages

Put the processes in a rotating queue

Grab first process. Look at earliest message (possibly none)

Hit the event e with Lemma 2

End up having delivered message, but still indecisive

Put p at back of queue, repeat

No faulty processes, all messages delivered, but no decision



Proof of Theorem

Know that we have to remain undecided. Want an admissible run.

Construct the run by stages

Put the processes in a rotating queue

Grab first process. Look at earliest message (possibly none)

Hit the event e with Lemma 2

End up having delivered message, but still indecisive

Put p at back of queue, repeat

No faulty processes, all messages delivered, but no decision



Proof of Theorem

Know that we have to remain undecided. Want an admissible run.

Construct the run by stages

Put the processes in a rotating queue

Grab first process. Look at earliest message (possibly none)

Hit the event e with Lemma 2

End up having delivered message, but still indecisive

Put p at back of queue, repeat

No faulty processes, all messages delivered, but no decision



Notes on Theorem

Just constructed indecisive run with no faults.

So, it isn’t the faults themselves, but the protocol being correct in
spite of faults, that causes indecision.

Thus: difficulty is in distinguishing fault from temporary delay.



More Notes on Theorem

Also, we only showed the existence of one bad run.

May be exceedingly unlikely.

Only applies to truly asynchronous systems.

Indecision could be resolved with physical clocks or failure detectors



What Have We Learned?

Consensus is everywhere

Paxos safe against failures, maybe even terminates (does it?)

Everything has a window of vulnerability

If we strengthen our model, may not apply



The Weakest Failure Detector for Solving Consensus

Tushar Chandra, Vassos Hadzilacos and Sam Toueg



The Failure Detector

Simplest failure detector necessary:

There is a time after which every failed process is suspected
by some correct process

There is a time after which some correct process is never
suspected by any correct process

Can use, for instance, timeouts to give you this


