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Introduction

e Defn 1: Collection of nodes connected via network
representing a single coherent system

 Defn 2 : Collection of processes within a computer

WHY DS ?

e Resource sharing/
Load Balancing

 Computation speedup

* Reliability

 SW/HW preference

* Data access




Introduction

Design issues in building a DS:

* Transparency — the distributed system should appear as a
conventional, centralized system to the user.

* Fault tolerance — the distributed system should continue to
function in the face of failure.

* Failure detection — in case of asynchronous DS, its hard to
differentiate between message delay Vs lost message

* Scalability — as demands increase, the system should easily
accept the addition of new resources to accommodate the
increased demand.



Introduction

Complexities in DS implementation :

* Unpredictable order of events in a distributed system
Problem 1- Update A needs to occur before update B

* No global clock shared by processes — if there was any, FCFS could
have solved all issues of event ordering

Some ordering could be implicit
* Events in a single process happen in order
* Message between processes must be sent before they are received

WHAT IS THE SOLUTION ???
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Partial Ordering of Events

» Causal events satisfying relation = “Happens
Before”

a) Two local events of a process:a 2 b
b) Two endpoints of a same message : a—=2>b
c) Transitive : If a=b and b—2>c, then a—=>c

* Concurrent events
a 2 b, aand b run independently



Space Time diagram of events
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Logical Clocks to implement
Partial Ordering of events

* Logical Clock = Way of assigning a number to
an event

* Following Clock condition should be satisfied
for partial ordering :

—If a 2 b, then C(a) < C(b)

“Converse is not true”



Logical Clocks to implement
Partial Ordering of events




Logical Clocks(Contd..)

‘@’ and ‘b’ are local events, to hold C(a) < C(b),

* Assign distinct numbers to every successive local events in
incremental fashion

‘@’ and ‘b’ are send and receive events of message
M, to hold C(a) < C(b),

LC(e;) = LC+1 if ¢ 1s an internal or send event
Tl max{LC,TS(m)} +1 if & = receive(m)



Total ordering of events

Useful in implementing a distributed system

Logical clocks could be extended to obtain
total ordering

If C(a) == C(b) && P(a) < P(b), thena=>Db

Example : mutual exclusion problem

— Multiple processes contending for one resource



Total Ordering of Events : Example

* Step 1: P, Sends Request Resource
— P; sends Request T, :P; to P,

— P, puts Request T _:P. on its request queue




Total Ordering of Events : Example

* Step 1: P, Sends Request Resource
— P; sends Request T, :P; to P,

— P, puts Request T _:P. on its request queue

‘ request

request '
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Total Ordering of Events : Example

* Step 2: P; Adds Message

— Pj puts Request T _:P. on its request queue

— P; sends Acknowledgement T, :P; to P

Time, Clocks, and the Ordering of Events in a Distributed System



Total Ordering of Events : Example

* Step 2: P; Adds Message
— Pj puts Request T _:P. on its request queue
— P; sends Acknowledgement T, :P; to P

To:P,

ack ack
OfROIE
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Total Ordering of Events : Example

* Step 3: P, Sends Release Resource
— P, removes Request T,.:P, from request queue

— P; sends Release T, :P; to each P,

Time, Clocks, and the Ordering of Events in a Distributed System



Total Ordering of Events : Example

* Step 3: P, Sends Release Resource
— P, removes Request T,.:P, from request queue

— P; sends Release T, :P; to each P,

‘ release

release '

To:P, T,:P,
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Total Ordering of Events : Example

* Step 4: P, Removes Message
— P, receives Release T, :P; from P,

— Pj removes Request T _:P, from request queue

Time, Clocks, and the Ordering of Events in a Distributed System



Anomalous behavior

T2:P,

Solution 1:
Attach a timestamp with T2:P2



Solution 2 : Physical Clocks

* Board diagram



Discussion

Proof of concept
Defines event ordering in distributed systems

Building systems on top of Specifications, Set
of assumptions ( No node failures, reliable
channels )

Logical Clock counters — overflow issues ?
Set of assumptions were strong ?
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Motivation and Goals

A process in a DS determines the global state of the system which is
useful in detecting stability of the system

Challenges :
— Communication delay
— Relative speeds of computations differ

Stable properties examples:
- Computation is terminated
- kth computational phase is terminated
- System is deadlocked

State detection algorithm is similar to capturing panoramic view of
migrating birds

— Composite picture should be meaningful

— Moving birds add complexity to the process



Distributed System Model

» State of processes and Channels

— States of processes and Channels are defined by
events and messages respectively

e Evente=<p,s,s’, M, c>
- process p
- sand s’ are states
- channel c and message M



Cuts and Consistent Cuts
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Consistent Global State

e A cut Cis consistent if for all events e and e’
(eEC)/\ (e'%e)=>e'EC

* |ntuitively if an event is part of a cut then all
events that happened before it must also be
part of the cut

* A consistent cut defines a consistent global
state



Assumptions

Processes do not fail

Reliable communication channels

FIFO delivery between a pair of processes
Channels have infinite buffers



Distributed System Model

* Single Token System — compute global states

InP Inc
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Distributed System Model

* Nondeterministic System

Global state: S3
Global state : SO
Event
Event P receives
- ’
Global state : S1
obal state Event Global state : S2

Q sends M’



Global State Detection Algorithm

 Marker Snapshot Protocol

— P records its state and pushes an empty marker M on all
outgoing channels

— Q, when receives a marker M along its incoming channel c,

* If it was not in recording state,

— Start recording Q’s state

— Record c’s state as empty state

— Pushes the Marker M onto all its outgoing channels
* If it was already in recording state,

— Stops recording on incoming channel ¢, and records the state of c as the
sequence of messages received since Q started recording and before
Marker M is received on this channel

When Q receives markers on all its incoming channels,
stop recording the state of Q and its incoming channels
and ‘call it a day’ for Q.



Properties of recorded global
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Figure 3. A Distributed Computation and the Lattice of its Global States



Stability Detection

* Algorithm

— Start: definite=false, y(S,)=false

— Repeat: record S*, definite=y(5*)
* Implications of “definite”

— definite == false:can not say YES/NO stability

— definite == true: stable property at termination
* Correctness

— S, can lead to S*, S* can lead to S,

—forallj: y(S;) = y(S;+1)



Discussion
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