

Gossip Techniques

Makoto Bentz mb434@cs.cornell.edu Oct. 27, 2010

What is Gossip?

- Gossip is the periodic pairwise exchange of bounded size messages between random nodes in the system in which nodes states may affect each other
- Has O(log n) completion time
- **Benefits:** simplicity, limited resource usage, robustness to failures, and tunable system behavior

How is Gossip Different?

- Unicast: One person tells one person
- Broadcast: One node tells everyone
- Multicast: One person tells all via intermediary nodes

 Gossip: Everyone tells someone else what they know

Eventual Consistency

- Strong Consistency: After the update completes, any subsequent access will return the updated value.
- Weak consistency: System doesn't guarantee subsequent accesses will return the updated value. A number of conditions need to be met before the value will be returned.
- Eventual consistency: Subset of weak consistency; the system guarantees that if no new updates are made to the object, eventually all accesses will return the last updated value.

Gossip Techniques: Papers

- Epidemic algorithms for replicated database maintenance, Demers et al. 6th PODC, 1987.
- <u>Astrolabe: A Robust and Scalable Technology for Distributed System</u> <u>Monitoring, Management, and Data Mining</u>, Van Renesse et al. ACM TOCS 2003.
- <u>Kelips: Building an Efficient and Stable P2P DHT Through Increased</u> <u>Memory and Background Overhead</u>, Indranil Gupta, Ken Birman, Prakash Linga, Al Demers and Robbert van Renesse. 2nd International Workshop on Peer-to-Peer Systems (IPTPS '03); February 20-21, 2003. Claremont Hotel, Berkeley, CA, USA.

Epidemic Algorithms: Authors

Dan Greene is at Xerox parc His research now focuses on vehicle networks

Alan Demers is a researcher at Cornell University

Carl Hauser is a Associate Professor at Washington State University

Epidemic Algorithms: Authors

Scott Shenker is an associate professor at U.C. Berkeley

Wes Irish now runs Coyote Hill Consulting LLC

Doug Terry is the Primary Researcher at Microsoft Research Silicon Valley

Epidemic Algorithms: Authors

- John Larson worked on Cedar DBMS and LDAP and at Sprint Advanced Technology Labs
- Howard Sturgis discovers 2-phase transaction commit and worked on Cedar DBMS and RPCs
- Dan Swinehart worked on Bayou

Epidemic Algorithms: Status Quo

Epidemic Algorithms: Problem Statement

- Clearinghouse Servers on Xerox Corporate Internet
- Several hundred Ethernets connected by gateways and phone lines
 - Several thousand computers
- Three-level hierarchy with top two levels being domains
- Need to keep databases on computers between domains (eventually) consistent

Epidemic Algorithms: First Attempt

- Originally using what was a rudimentary form of Direct Mail (Multicast) and Anti-Entropy (Gossip)
- Inefficient/Redundant
 - Anti-Entropy was being redundantly followed by Direct Mail, saturating the network (300 clients -> 90,000 mail messages)
- Not scalable
 - Network capacity saturated -> failure

Epidemic Techniques: What are they?

- "Epidemic algorithms follow the paradigm of nature by applying simple rules to spread information by just having a local view of the environment" Hollerung, Bleckmann
- Conway's **Game of Life** is an epidemic algorithm
- Medical epidemics spread between individuals by contagion

Epidemic Algorithms: Types of Spreading

Unit Type	Description	
Susceptible	Does not know info, but can get info	S
Infective	Knows the info and spreads it by the rule	
Removed	Knows the info but does not spread it	R

Can be combinations of the above

Epidemic Algorithms: Direct Mail

- Direct Mail: Send to everyone
- Send
 - FOR EACH s' in S DO PostMail[to: s', msg : ("Update", s.ValueOf)]
 ENDLOOP
- Receive
 - •IF s.Value0f.t < t THEN s.ValueOf - (7!,t)
- **Susceptaible to failure**, O(n) bottleneck, Original could have incomplete information
- Xerox system did not use broadcast

Epidemic Algorithms: Anti-Entropy

- Anti-Entropy: Everyone picks a site at random, and resolves differences between it and its recipient
- FOR SOME s' in S DO ResolveDifference[s, s'] ENDLOOP
- Resolving can be done by push, pull, push-pull
- Slower than direct mail, and expensive to compare databases

Epidemic Algorithms: Anti-Entropy: Resolving

• Push

ResolveDifference : PROC[.s, s'] = { IF s.Value0f.t > s'.Value0f.t THEN s'.Value0f <- s.Value0f }

• Pull

ResolveDifference : PROCis, s'] = { IF s.Value0f.t < s'.Value0f.t THEN s.Value0f + s'.Value0f }

Push-Pull

ResolveDifference : PR.OC'[s. s'] = { SELECT TRUE FROM s.Value0f.l > s'.ValueOf.t => s'.ValueOf - s.ValueOf; s.ValueOf.t < s'.ValueOf.t => s.ValueOf - s'.ValueOf; ENDCASE => NULL;

Epidemic Algorithms: Rumor Spreading

- 1. There are initially no active people, each person with a rumor is active
- 2. Someone gets the rumor
- 3. Each active person then randomly phones other persons to tell them the rumor
- 4. If the recipient already knows the rumor, then the sender loses interest and becomes inactive

Epidemic Algorithms: Rumor Spreading

Epidemic Algorithms: Theory

• s + i + r = 1

$$\frac{ds}{dt} = -si$$
$$\frac{di}{dt} = +si - \frac{1}{k}(1-s)i$$
$$\frac{di}{ds} = -\frac{k+1}{k} + \frac{1}{ks}$$
$$i(s) = -\frac{k+1}{k}s + \frac{1}{k}\log s + c$$

Epidemic Algorithms: Backing up

- A complex epidemic may not converge
- Back up by adding anti-entropy as well as rumor mongering
 - Direct mail is O(n²) per cycle at worst case
 - Rumor mongering is always O(n) or less
- Death certificates carry timestamps marking deletion
 - Dormant death certificates do not scale well (deletion time ~ O(log n)
 - Activation timestamp added to death certificate to prevent rollback of data changed after a death certificate first went out

Epidemic Algorithms: Testing

Spatial	tinst	tave	Compar	e Traffic	Update Traffic		
Distribution)	Average	Bushey	Average	Bushey	
uniform	11.00	6.97	3.71	47.54	5.83	75.17	
a = 1.2	16.89	9.92	1.14	6.39	2.69	18.03	
a = 1.4	17.34	10.15	1.08	4.68	2.55	13.68	
a = 1.6	19.06	11.06	0.94	2.90	2.32	10.20	
a = 1.8	21.46	12.37	0.82	1.68	2.12	7.03	
a = 2.0	24.64	14.14	0.72	0.94	1.94	4.85	

Table 5. Simulation results for anti-entropy, connection limit 1.

Epidemic Algorithms: Discussion

- I felt like this paper started to rush near the end
 - Great explanation of the theory, weak explanation of the testing and implementation
- This paper goes on to be the foundation of Gossip
 - Cited at least 249+18(PDOC+SIGOPS) times

Bayou: Authors

researcher at **Cornell University**

Alan Demers is a Carl Hauser is a Associate Professor at Washington State University

Doug Terry is the Primary Researcher at Microsoft Research Silicon Valley

Bayou: Authors

• Marvin Theimer is the Senior Principal Engineer at Amazon Web Services

Michael Spreitzer works in Services Management Middleware at Thomas J. Watson Research Center, Hawthorne, NY USA

Bayou: The Name

•TOP 10 Reasons for the name "Bayou":

- 10. Why not?
- 9. It's better than "UbiData".
- 8. It's a lot better than "DocuData".
- 7. It's not an acronym.
- 6. It's not named after a soft drink (e.g. Tab, Sprite, Coda Cola, ...).
- 5. We're working on replication that's "fluid" like a bayou.
- 4. We're exploring a small part of the "UbiComp Swamp".
- 3. It's the name of a famous tapestry (spelled "Bayeux" however).
- 2. Our system will allow you to access data even when you're "bayou self".
- 1. It's pronounced "Bi-U", which makes it "Ubi" pronounced backwards.

Bayou: The Problem

- Wireless and mobile devices do not permit constant connectivity
- Weak connectivity
- Collaborative applications such as calendars

MessagePad 100 (1993)

Table 1 Bridgi Brit 1		1000
291		
and the second second	Laboration 2 mm	
	No. Kat Dir. (App) Sectors Long - Sector 2010 Col Long - Sector 2010 Col	
1000 M 10	and from 1 Protor 201	Columbur West 10
	Bullet .	
	1.0	
	to Reduct	
and the second s		
	10 ¹⁰	
	4.0	
	8.0	
	the factors	
	1.0	_
And the other land, they have		

Bayou: The Design

- Data collections are replicated at Servers
- Clients run applications that access the servers via an API
 - Read and Write
- Each server stores an ordered log of Writes and the resulting data
- Performs Writes and Conflict Detection
- Anti-Entropy to propagate updates

Bayou: Design: Conflict Detection

- Dependency Checks
 - Application Specific Conflict Checks
 - Write is accompanied with query and expected result required to write (ex. to reserve 2, the set of reserved should not include 2)
- Merge Procedure
 - Conflict Detected -> Merge Procedure
 - High-level, interpreted language code to pick a result in merge
 - Does not lock conflicted data

Bayou: Design: Eventual Consistency

- Bayou replicas all follow Eventual Consistency
- This is ensured by the following two rules
 - Writes are performed in order
 - Conflict Detection and Merge procedure are deterministic, resulting in the same resolve at the server
- Writes are stable after they have been executed for the last time
- Commits will ensure stability

- Tuple Store, in-memory relational database
- Access Control by public-key cryptography, allows for grants, delegation and revocation

Bayou: Implementation

- Written in ILU (an RPC) and Tcl
- Per-database library mechanism for each write to prevent replicated code

Table 1: Size of Bayou Storage System for the Bibliographic Database with 1550 Entries (sizes in Kilobytes)

Number of Tentative Writes	0 (none)	50	100	500	1550 (all)
Write Log	9	129	259	1302	4028
Tuple Store Ckpt	396	384	371	269	1
Total	405	513	630	1571	4029
Factor to 368K bibtex source	1.1	1.39	1.71	4.27	10.95

Bayou: Implementation

Tentative Writes	0	50		100		500		1550	
	Server running on a Sun SPARC/20 with Sunos								
Undo all	0	31	(6)	70	(20)	330	(155)	866	(195)
(avg. per Write)		.62		.7		.66		.56	
Redo all	0	237	(85)	611	(302)	2796	(830)	7838	(1094)
(avg. per Write)		4.74		6.11		5.59		5.05	
		Server running on a Gateway Liberty Laptop with Linux							
Undo all	0	47	(3)	104	(7)	482	(15)	1288	(62)
(avg. per Write)		.94		1.04		.96		.83	
Redo all	0	302	(91)	705	(134)	3504	(264)	9920	(294)
(avg. per Write)		6.04		7.05		7.01		6.4	

Table 2: Performance of the Bayou Storage System for Operations on Tentative Writes in the Write Log (times in milliseconds with standard deviations in parentheses)

Table 3: Performance of the Bayou Client Operations

(times in milliseconds with standard deviations in parentheses)

Server	Sun SPARC/20		Gateway Liberty		Sun SPARC/20	
Client	same as server		same as server		Gateway Liberty	
Read: 1 tuple	27	(19)	38	(5)	23	(4)
100 tuples	206	(20)	358	(28)	244	(10)
Write: no conflict	159	(32)	212	(29)	177	(22)
with conflict	207	(37)	372	(17)	223	(40)

Bayou: Discussion

- Was a well-written paper
- Industry paper, testing not well explained

 <u>http://www2.cs.uni-paderborn.de/cs/ag-madh/WWW/Teaching/</u> 2004SS/AlgInternet/Submissions/09-Epidemic-Algorithms.pdf