
Gossip Techniques	

Makoto Bentz	

mb434@cs.cornell.edu	

Oct. 27, 2010	

What is Gossip?	

• Gossip is the periodic pairwise
exchange of bounded size
messages between random
nodes in the system in which
nodes states may affect each
other

• Has O(log n) completion time

• Benefits: simplicity, limited
resource usage, robustness to
failures, and tunable system
behavior

How is Gossip Different?	

• Unicast: One person tells one
person"

• Broadcast: One node tells
everyone"

• Multicast: One person tells all
via intermediary nodes

• Gossip: Everyone tells
someone else what they know

Eventual Consistency	

• Strong Consistency: After the update
completes, any subsequent access will
return the updated value.

• Weak consistency: System doesn’t
guarantee subsequent accesses will
return the updated value. A number of
conditions need to be met before the
value will be returned.

• Eventual consistency: Subset of weak
consistency; the system guarantees
that if no new updates are made to the
object, eventually all accesses will
return the last updated value.

Inco
nsistent

T
im

e
A B

Gossip Techniques: Papers	

• Epidemic algorithms for replicated database maintenance, Demers et al.
6th PODC, 1987.	

• Astrolabe: A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining, Van Renesse et al. ACM
TOCS 2003.	

• Kelips: Building an Efficient and Stable P2P DHT Through Increased
Memory and Background Overhead, Indranil Gupta, Ken Birman,
Prakash Linga, Al Demers and Robbert van Renesse. 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03); February 20-21, 2003.
Claremont Hotel, Berkeley, CA, USA.	

Epidemic Algorithms: Authors	

Dan Greene is at
Xerox parc

His research now
focuses on vehicle

networks

Alan Demers is a
researcher at

Cornell University

Carl Hauser is a
Associate Professor at

Washington State
University

Epidemic Algorithms: Authors	

Wes Irish now
runs Coyote Hill
Consulting LLC

Scott Shenker is
an associate professor

at U.C. Berkeley

Doug Terry is the
Primary Researcher at

Microsoft Research
Silicon Valley

Epidemic Algorithms: Authors	

• John Larson worked on Cedar DBMS and LDAP and at Sprint
Advanced Technology Labs

• Howard Sturgis discovers 2-phase transaction commit and
worked on Cedar DBMS and RPCs

• Dan Swinehart worked on Bayou

Epidemic Algorithms: Status Quo	

Networks

Computers

Epidemic Algorithms: Problem Statement	

• Clearinghouse Servers on Xerox Corporate Internet

• Several hundred Ethernets connected by gateways and phone
lines

• Several thousand computers

• Three-level hierarchy with top two levels being domains

• Need to keep databases on computers between domains
(eventually) consistent

Epidemic Algorithms: First Attempt	

• Originally using what was a rudimentary form of Direct Mail
(Multicast) and Anti-Entropy (Gossip)

• Inefficient/Redundant

• Anti-Entropy was being redundantly followed by Direct Mail,
saturating the network (300 clients -> 90,000 mail messages)

• Not scalable

• Network capacity saturated -> failure

Epidemic Techniques: What are they?	

•  “Epidemic algorithms follow the
paradigm of nature by applying
simple rules to spread
information by just having a
local view of the environment”
Hollerung, Bleckmann"

• Conway’s Game of Life is an
epidemic algorithm"

• Medical epidemics spread
between individuals by
contagion"

Epidemic Algorithms: Types of Spreading	

Unit Type Description

Susceptible! Does not know info, but can
get info

Infective! Knows the info and spreads
it by the rule

Removed! Knows the info but does not
spread it

Can be combinations of the above

S

I

R

Epidemic Algorithms: Direct Mail	

• Direct Mail: Send to everyone

• Send

• FOR EACH s’ in S "
 DO PostMail[to: s’, msg : (“Update”,
s.ValueOf)]"
ENDLOOP

• Receive

• IF s.Value0f.t < t THEN "
 s.ValueOf - (7!,t)

• Susceptaible to failure, O(n) bottleneck,
Original could have incomplete information

• Xerox system did not use broadcast
mailing

I
S

S
S

Epidemic Algorithms: Anti-Entropy	

• Anti-Entropy: Everyone picks a
site at random, and resolves
differences between it and its
recipient

• FOR SOME s’ in S "
 DO ResolveDifference[s, s’]"
ENDLOOP

• Resolving can be done by push,
pull, push-pull

• Slower than direct mail, and
expensive to compare databases

I
S

Epidemic Algorithms: Anti-Entropy: Resolving	

• Push"
ResolveDifference : PROC[.s, s’] = { "
 IF s.Value0f.t > s’.ValueOf.t THEN"
 s’.ValueOf <- s.ValueOf }

• Pull"
ResolveDifference : PROCis, s’] = {"
 IF s.Value0f.t < s’.ValueOf.t THEN"
 s.ValueOf + s’.ValueOf }

• Push-Pull"
ResolveDifference : PR.OC’[s. s’] = {"
 SELECT TRUE FROM"
 s.Value0f.l > s’.ValueOf.t => s’.ValueOf - s.ValueOf;"
 s.ValueOf.t < s’.ValueOf.t => s.ValueOf - s’.ValueOf;"
ENDCASE => NULL;

• Push converges much slower than pull or push-pull

Epidemic Algorithms: Rumor Spreading	

1. There are initially no active
people, each person with a
rumor is active

2. Someone gets the rumor

3. Each active person then
randomly phones other persons
to tell them the rumor

4. If the recipient already knows
the rumor, then the sender
loses interest and becomes
inactive

I
S

I
R

S

4. Rec already
knows, sender
loses interest

3. Rumor is still hot

X

Epidemic Algorithms: Rumor Spreading

• Blind vs. Feedback"
Blind senders lose interest with probability 1/k "
Feedback senders lose interest dependent on the recipient

• Counter vs. Coin"
Counter loses interest after k unnecessary contacts "
Coin loses interest after a 1/k probability coin toss upon
unnecessary contacts

R
I

I

... k times

...
P=1/k

P(recv)

Counter

Blind

Feedback

Epidemic Algorithms: Theory

•  s + i + r = 1	

Epidemic Algorithms: Backing up	

• A complex epidemic may not converge

• Back up by adding anti-entropy as well as rumor mongering

• Direct mail is O(n2) per cycle at worst case

• Rumor mongering is always O(n) or less

• Death certificates carry timestamps marking deletion

• Dormant death certificates do not scale well"
(deletion time ~ O(log n)

• Activation timestamp added to death certificate to prevent
rollback of data changed after a death certificate first went out

Epidemic Algorithms: Testing	

Epidemic Algorithms: Discussion	

• I felt like this paper started to rush near the end

• Great explanation of the theory, weak explanation of the testing
and implementation

• This paper goes on to be the foundation of Gossip

• Cited at least 249+18(PDOC+SIGOPS) times

Bayou: Authors	

Doug Terry is the
Primary Researcher at

Microsoft Research
Silicon Valley

Alan Demers is a
researcher at

Cornell University

Carl Hauser is a
Associate Professor at

Washington State
University

Bayou: Authors	

• Marvin Theimer is the
Senior Principal Engineer at
Amazon Web Services

Michael Spreitzer works in
Services Management Middleware at
Thomas J. Watson Research Center,
Hawthorne, NY USA

Bayou: The Name	

• TOP 10 Reasons for the name "Bayou":	

•  10. Why not?	

•  9. It's better than "UbiData".	

•  8. It's a lot better than "DocuData".	

•  7. It's not an acronym.	

•  6. It's not named after a soft drink (e.g. Tab, Sprite, Coda Cola, ...).	

•  5. We're working on replication that's "fluid" like a bayou.	

•  4. We're exploring a small part of the "UbiComp Swamp".	

•  3. It's the name of a famous tapestry (spelled "Bayeux" however).	

•  2. Our system will allow you to access data even when you're "bayou self".	

•  1. It's pronounced "Bi-U", which makes it "Ubi" pronounced backwards.	

•  (from http://www2.parc.com/csl/projects/bayou/TopTenName.html)	

Bayou: The Problem	

• Wireless and mobile devices
do not permit constant
connectivity

• Weak connectivity

• Collaborative applications
such as calendars

Powerbook 500 (1994)

MessagePad 100 (1993)

Bayou: The Design	

• Data collections are replicated at
Servers

• Clients run applications that
access the servers via an API

• Read and Write

• Each server stores an ordered
log of Writes and the resulting
data

• Performs Writes and Conflict
Detection

• Anti-Entropy to propagate
updates

Bayou: Design: Conflict Detection	

• Dependency Checks

• Application Specific Conflict Checks

• Write is accompanied with query and expected result required
to write (ex. to reserve 2, the set of reserved should not include
2)

• Merge Procedure

• Conflict Detected -> Merge Procedure

• High-level, interpreted language code to pick a result in merge

• Does not lock conflicted data

Bayou: Design: Eventual Consistency	

• Bayou replicas all follow Eventual Consistency

• This is ensured by the following two rules

• Writes are performed in order

• Conflict Detection and Merge procedure are deterministic,
resulting in the same resolve at the server

• Writes are stable after they have been executed for the last time

• Commits will ensure stability

Bayou: Implementation	

• Tuple Store, in-memory relational database

• Access Control by public-key cryptography, allows for grants,
delegation and revocation

Bayou: Implementation	

• Written in ILU (an RPC) and Tcl

• Per-database library mechanism for each write to prevent
replicated code

Bayou: Implementation	

Bayou: Discussion	

• Was a well-written paper

• Industry paper, testing not well explained

Resources	

• http://www2.cs.uni-paderborn.de/cs/ag-madh/WWW/Teaching/
2004SS/AlgInternet/Submissions/09-Epidemic-Algorithms.pdf

