MULTICAST

Presented by Tom Ternquist
CS 6410
10/28/10

Network Communication

@)
- Unicast e.g. downloading file ._/O‘OO
from webserver o O

- One to one

- Broadcast e.g. radio transmission
- One to many (everyone)
o Mu'ticast e.g. streaming video, IRC 0
- One to many (groups) *@:O

. AnycaSt e.g. server selection o o

- One to one of many 'QOO
o

Images courtesy of Wikipedia

Network Communication

O
. : g. downloading fi o0
Unicast 3, touplado e "o

- One to one
- Broadcast e.g. radio transmission

- One to many (everyone)

- Multicast e.g. streaming video, IRC o
- One to many (groups) "gv:o

. AnycaSt e.g. server selection o o

- One to one of many ’—Q.O
o

Images courtesy of Wikipedia

Multicast

Two Challenges
|dentifying the receivers
How to address packets that are sent to receivers

Can’t specify individual IP addresses
Obvious scaling problem

Solution - Address Indirection
Multicast Groups

Remaining Challenges
Establishing multicast groups and managing membership
How to route messages to recipients within multicast groups

Multicast

- IP Multicast

- Pros: Efficient

- Cons: Unstable, can send more than capacity; not widely deployed
- Network Overlay Multicast

- Pros: Can only send what you’re capable of; can use it anywhere

- Cons: Not as efficient as |IP Multicast

Multicast

- IP Multicast

- Pros: Efficient

- Cons: Unstable, can send more than capacity; not widely deployed
- Network Overlay Multicast

- Pros: Can only send what you’re capable of; can use it anywhere

- Cons: Not as efficient as IP Multicast

Overlay Network

The Good

- Incrementally Deployable
- Adaptable

- Robust

- Customizable

- Standard

The Bad

- Management Complexity
- The Real World

- Inefficiency

- Information Loss

L
Types of Application-Level Multicast

Single-Source Multicast

- Trusted servers provide
infrastructure for
distribution

- Manual infrastructure
setup

Peer-to-Peer Multicast

- Depends on cooperative

clients

- Flexible, distributed

infrastructure

Overcast: Reliable Multicasting with an
Overlay Network

L
Authors

- John Jannotti
- Assistant Professor at Brown

- David Gifford

- Computational Genomics at MIT
- Kirk Johnson

- Frans Kaashoek

- Professor at MIT

- Founded SightPath Inc, acquired by Cisco
- James O’Toole

- Student of Kaashoek

- MIT PhD
- High school dropout

Motivation and Goals

Deliver bandwidth-intensive content on demand
How do we scale to support large numbers of clients for
long-running content?

Applications
On demand high-quality video streams

Full-fidelity content

Approach

Application-level multicast using an overlay network

Distribution trees that maximize each node’s bandwidth
and efficiently utilize network substrate topology

Global status at root that allows quick client joining while
still scalable

Scalability and efficiency approaching IP Multicast

Design — Overview
- Tree Building

- Maintaining Node Status

- Reliability

- Dissemination

L
Bandwidth Optimization — Tree Building

Protocol

- New node contacts root of
Overcast group, root set
as current

- Tries to get as far away
from root as possible

without sacrificing
Figure 1: An example network and Overcast topology. The
1 straight lines are the links in the substrate network. These
ba n dWI dth links are labeled with bandwidth in Mbit/s. The curved lines

represent connections in the Overlay network. S represents
the source, O represents two Overcast nodes.

Bandwidth Optimization — Tree Building
Protocol

- New node contacts root of
Overcast group, root set Q
as current

- Tries to get as far away o5

from root as possible
without sacrificing
bandwidth

Bandwidth Optimization — Tree Building
Protocol

- New node contacts root of
Overcast group, root set
as current

- Tries to get as far away o5 O
from root as possible

without sacrificing
bandwidth 5 5

Bandwidth Optimization — Tree Building
Protocol

- New node contacts root of
Overcast group, root set
as current

- Tries to get as far away
from root as possible
without sacrificing
bandwidth

Maintaining Node Status — Up/Down

Protocol

Keeps track of which nodes are currently up and which
are down

Relies on periodic check ins with node’s parent.

Check in notifications are propagated up the tree to the
root.
“‘Death certificates”
“Birth certificates”
Changes to reporting node’s “extra information”
Certificates/changes from node’s children

Maintaining Node Status — Up/Down
Protocol

- Potential race condition when
node chooses a new parent
- Death certificate from former parent
- Birth certificate from new parent

- Birth certificate arrives just prior to
death certificate.

Maintaining Node Status — Up/Down
Protocol

- Potential race condition when
node chooses a new parent
- Death certificate from former parent
- Birth certificate from new parent

- Birth certificate arrives just prior to
death certificate.

Maintaining Node Status — Up/Down
Protocol

- Potential race condition when
node chooses a new parent
- Death certificate from former parent
- Birth certificate from new parent

- Birth certificate arrives just prior to
death certificate.

Maintaining Node Status — Up/Down

Protocol

- Potential race condition when
node chooses a new parent
- Death certificate from former parent
- Birth certificate from new parent

- Birth certificate arrives just prior to
death certificate.

Maintaining Node Status — Up/Down
Protocol

- Solution: Nodes maintain
sequence number for parent
changes.

L
Reliability — Root Replication

- Potential for overload and
reliability problems

- Replicated roots used in
round-robin fashion

Figure 2: A specially configured distribution topology that
allows either of the grey nodes to quickly stand in as the root

. F a u It t O I e ra n C e th O rou g h Eli:;lzc:l)mrﬁdteheAulrll ffiillllsél rIllCc)):iieeSs‘ have complete status informa-
linear configuration at top of
hierarchy

Dissemination — “Overcasting”

Support for HTTP Clients
Data moves along distribution tree using TCP streams

Failures during overcasting result in the distribution tree
being rebuilt

Distribution paused while rebuilding is in process

Designed around assumption that application level buffers will
mask most failures

Evaluation — Goals

- How well does Overcast utilize bandwidth?

- How does Overcast perform relative to IP Multicast?

- How resilient is Overcast to failures?

Evaluation — Methodology

Evaluated using simulation because real-world
deployments too small

Overlay network simulated with constant number of

network nodes with increasing numbers of Overcast
nodes

Network topologies generated from Georgia Tech
Internetwork Models

Five different 600 node graphs

Evaluation — Bandwidth Utilization

- Testing the efficiency of
Overcast

- Simulation artifact

- Backbone routers turned on
1stin 600 node case

- Put at top of tree

> o
(@)} o0
)])])

—— Backbone
—&— Random

N
™
|

<
o
|

Fraction of possible bandwidth achieved

o
<)

| ' | ' |
200 400 600
Number of overcast nodes

=)

Figure 3: Fraction of potential bandwidth provided by
Overcast.

Evaluation — Efficiency

Network Load

Number of times a particular
piece of data must traverse a
network link to reach all
Overcast nodes

IP Multicast takes one less

than number of nodes
Ratio of Overcast network
load to IP Multicast load

4

—&— Random

3 —@— Backbone

Average waste
[\

T T T T]
200 400 600
Number of overcast nodes

[

Figure 4: Ratio of the number of times a packet must “hit
the wire” to be propagated through an Overcast network to a
lower bound estimate of the same measure for IP Multicast.

Evaluation — Resiliency

50
: I_/Ieasur.e convergence AP
time using “round time” as 0] T Grenewnote.
fundamental unit g 30 T e
g ------ One node fails
- Authors expect round time & =4 % "
to be approximately 1-2 B AR e o
seconds 3
- Uses backbone approach o 2‘5‘i)verca;tmde§60 .

Figure 6: Number of rounds to recover a stable distribution
tree as a function of the number of nodes that change state
and the number of nodes in the network.

Discussion and Thoughts

- Deployable

- Infrastructure requirements

- Acceptable fault tolerance?
- Rebuild time
- Delays due to polling acceptable?

T AR
R e T

=
e
7p)
v
O
.
-
=
L
e
S
=
d
C
O
0
L
Aoy
I

Cooperative Environments

SplitStream

L
Authors

- Miguel Castro
- Microsoft Research
- Pastry, Scribe

- Peter Druschel
- Rice University
- Pastry, Scribe
- Anne-Marie Kermarrec
- Pastry, Scribe
- Atul Singh
- Student of Druschel
- NEC Research

Motivation

Conventional tree-based multicast not well matched to a
cooperative environment

Only a relatively small number of interior nodes carry the
burden of most multicast messages

Applications
Peer exchanging resources in cooperative in environment
Decentralized, generic infrastructure

L
Approach

- Striping content across a forest of interior-node-disjoint
multicast trees

- peers contribute only as much forwarding bandwidth as they
receive

- Accommodate different bandwidth capacities
- Focus on low overhead for maintenance

Routing using Pastry

- Each member is given a
unique nodeld and each
multicast group is given a
unique key

- Nodes maintain a routing
table and a leaf set
- Prefix routing
- Proximity-aware

- Leaf-sets are the set of
neighboring nodes

enodeld
mkey

% »id462ba

’

$d4213f

65a1fceLoute(m,d46a1c)

*13da3

Figure 3: Routing a message from the node with
nodeld 65alfc to key d46alc. The dots depict the
nodelds of live nodes in Pastry’s circular namespace.

Multicast and Group Membership with
Scribe

- Scribe is an application-level multicast infrastructure
- Built upon Pastry’s peer-to-peer routing substrate
- Group management

- Multicast tree creation

- Joins Pastry routes of each group member to common rendezvous
point (grouplD)

Design — Stripes and Forest Construction

Content is divided into k Source
stripes
= LAk AREN Lo GAAL
Each stripe is given its Stripeld Ox Stripeld 1x Stripeld Fx
I I O Nodelds starting Ox O Nodelds starting Fx
own Scrlbe mUItlcaSt ® Nodelds starting 1x < Nodelds starting 2x..Ex
tree
Figure 4: SplitStream’s forest construction. The
I I source splits the content and multicasts each stripe
PaStry prOVIdeS preflx in its delgignated tree. Each stripe’s stripeld starl'i:s
I with a different digit. The nodelds of interior nodes
rOUtIng to e_nsure_ that. share a prefix witﬁ the stripeld, thus they must be
leaves in the other trees, e.g., node M with a nodeld
eaCh nOde IS an Interlor starting with 1 is an intergior node in the tree for
the stripeld starting with 1 and a leaf node in other
node in one tree. the strip :

Inbound constraints met,
need addition
mechanism for outbound

Design — “Push-down”

- Scribe’s “push-down” process involves recursively
pushing the prospective child down to children.

- Modified “push-down”

- Prospective child always admitted,

- Looks to reject a child whose stripeld do not share prefix (or
shortest match) with local node’s nodeld

Node 001*
requests to join
stripe 0800

089" 08B* 081* o

Design — “Push-down”

- Scribe’s “push-down” process involves recursively
pushing the prospective child down to children.

- Modified “push-down”

- Prospective child always admitted,

- Looks to reject a child whose stripeld do not share prefix (or
shortest match) with local node’s nodeld

0800 080*

Node 080* takes
001* as a child

001*

0800 orphan on

800 / 0800

1800 and drop 9*

089" 08B* 081* o

Design — “Push-down”

- Scribe’s “push-down” process involves recursively
pushing the prospective child down to children.

- Modified “push-down”

- Prospective child always admitted,

- Looks to reject a child whose stripeld do not share prefix (or
shortest match) with local node’s nodeld

089" 08B* 081* 001*

Design — “Push-down”

- Scribe’s “push-down” process involves recursively
pushing the prospective child down to children.

- Modified “push-down”

- Prospective child always admitted

- Looks to reject a child whose stripeld do not share prefix (or
shortest match) with local node’s nodeld

. 0800 ”
Node 085*

e requests to join
stripe 0800

089" 08B* 081* 001*

Design — “Push-down”

- Scribe’s “push-down” process involves recursively
pushing the prospective child down to children.

- Modified “push-down”

- Prospective child always admitted,

- Looks to reject a child whose stripeld do not share prefix (or
shortest match) with local node’s nodeld

Node 080* takes
085* as a child
Orphan on 0800 and drOpS 001*,
‘ since it has
shorter prefix

089" 08B* 081* 085* 001*
match

Design — Spare Capacity Group

Used when an orphaned anycast
node can’t locate a parent f?ﬁf ,,,,,,,,

’

i in{03A} .in{1,..,16}

spare: 2 .-~ spare: 4

.

Nodes have spare
forwarding capacity

~ .’

Figure 6: Anycast to the spare capacity group.

CheCkS for C CleS Node 0 anycasts to the spare capacity group to find
y a parent for the stripe whose identifier starts with

6. The request is routed by Pastry towards the root

of the spare capacity group until it reaches node 1,

which is already in the tree. Node 1 forwards the

request to node 2, one of its children. Since 2 has no

children, it checks if it can satisfy node 0’s request.

In this case, it cannot because it does not receive

stripe 6. Therefore, it sends the request back to

node 1 and node 1 sends it down to its other child.

Node 3 can satisfy 0’s request and replies to O.

Design — Correctness

J Argue that foreStS can CONDITION 2. A sufficient condition for the feasibility of
. forest construction is for Condition 1 to hold and for all
be COnStrU Cted Wlth nodes whose forwarding capacity exceeds their desired inde-

gree to receive or originate all k stripes, i.e.,

high probability given
the sufficient condition ViiCi> L= L+Ti=Fk (2)
for feasibility (on right)

&
b

IN| x kb x (1 — min)

Evaluation — Goals

- What is the overhead of maintaining the forest?

- How well does its multicast perform compared to IP and
Scribe?

- How resilient is SplitStream to failures?

Evaluation — Experimental Setup

Network Simulation
Packet level, discrete event simulator

Network Topologies
GATech
Transit-stub topology
5050 hierarchically arranged routers
Mercator

Topology model based on measurements of Internet using Mercator
System

102,639 routers

CorpNet
Generated using measurements from Microsoft corporate network
298 routers

Evaluation — Forest Construction
Overhead

- Efficiency metrics
- Node stress
- Link stress

- Point (x,y) indicates that a fraction y of all nodes have stress <= x

] 1
?f 20.9 ’!7

90.9 3
§08 -§0.8 f,
< f ff 507 [{I
507 3 f ; So6 ”l' -
£0.6 % %16 x NB 5 l f ~dxd
S05 < t‘ - §05 [- Gnutella [
g] T 16x32 0.4 ~—16x16 [

X [(0]
004 7 7] - 16x 18 203 f
503 y —~—16x16 | | 202
EO.Z A 5
3 x 001
O0.1 0 ﬁ g

0 ‘ ‘ 1 10 100 1000 10000
1 10 100 1000 10000
Node Stress

Node Stress

Figure 9: Cumulative distribution of node stress
during forest construction with 40,000 nodes on
GATech.

Figure 8: Cumulative distribution of node stress
during forest construction with 40,000 nodes on
GATech.

Evaluation — Multicast Performance

1

- Compared performance |

£0.8

—

to Scribe and IP S0

§0.5

M u Itl Cast _;,0.4 — IP Multicast

%0.3 1

——16x 16

S
£0.2

E0.
001 4

0

1 10 100 1000 10000
Link stress

(a) SplitStream vs IP

1
209 | 7/;—-'
X

£0.38 1
s
20.7 4
o
506 16x 16

— X
505

go_ 4 —Scribe
>

T0.3

=

£0.2

3

O 0.1 ____‘——/

1 10 100 1000 10000
Link stress

(b) SplitStream vs Scribe

Figure 12: Cumulative distribution of link stress
during multicast with 40,000 nodes on GATech.

Evaluation — Resllience to Node Failures

- Tested performance under catastrophic failure

- Failed 2,500 of 10,000 nodes 10 seconds into
simulation

—_
o

25

r_r

E 16 L |

3 Yj [TI

8 207 g 12

: -{ =10]

o Pastry =

m ——

%§ 15 — Pastry + SplitStream 5 8-

© =) 5 \

m —

@5 o I\ } Pastry + SplitStream + Data .§ 6 Y -
s N Z 4 _— - Average

5)

s l - Minimum

g 5+ \ A 24 k

g 0 ! ! T T T T T T T T
- 0 0 20 40 60 80 100 120 140 160 180 200 220

0 20 40 60 80 100 120 140 160 180 200 220 Time (seconds)
Time (seconds . . o s
() Figure 15: Maximum, average, and minimum num-
ber of stripes received when 25% out of 10,000 nodes

Figure 16: Number of messages per second per node -
fail on GATech.

when 25% out of 10,000 nodes fail on GATech.

Discussion

Practical/Deployable?
Compare to Overcast
Complexity of mechanism

Is it safe to assume there is enough bandwidth to carry
each stripe?

Will all clients be cooperative and trusting?
What happens with misbehaving clients?

Does SplitStream actually deliver on its promises?

