
MULTICAST
Presented by Tom Ternquist
CS 6410
10/28/10

Network Communication
• Unicast

•  One to one

• Broadcast
•  One to many (everyone)

• Multicast

•  One to many (groups)

• Anycast
•  One to one of many

Images courtesy of Wikipedia

e.g. downloading file
from webserver

e.g. radio transmission

e.g. streaming video, IRC

e.g. server selection

Network Communication
• Unicast

•  One to one

• Broadcast
•  One to many (everyone)

• Multicast

•  One to many (groups)

• Anycast
•  One to one of many

Images courtesy of Wikipedia

e.g. downloading file
from webserver

e.g. radio transmission

e.g. streaming video, IRC

e.g. server selection

Multicast
•  Two Challenges

•  Identifying the receivers
•  How to address packets that are sent to receivers

• Can’t specify individual IP addresses
•  Obvious scaling problem

• Solution - Address Indirection
•  Multicast Groups

• Remaining Challenges
•  Establishing multicast groups and managing membership
•  How to route messages to recipients within multicast groups

Multicast

•  IP Multicast

•  Pros: Efficient
•  Cons: Unstable, can send more than capacity; not widely deployed

• Network Overlay Multicast
•  Pros: Can only send what you’re capable of; can use it anywhere
•  Cons: Not as efficient as IP Multicast

Multicast

•  IP Multicast

•  Pros: Efficient
•  Cons: Unstable, can send more than capacity; not widely deployed

• Network Overlay Multicast
•  Pros: Can only send what you’re capable of; can use it anywhere
•  Cons: Not as efficient as IP Multicast

Overlay Network

The Good

•  Incrementally Deployable
• Adaptable
• Robust
• Customizable
• Standard

The Bad

• Management Complexity
•  The Real World
•  Inefficiency
•  Information Loss

Types of Application-Level Multicast

Single-Source Multicast

•  Trusted servers provide
infrastructure for
distribution

• Manual infrastructure
setup

Peer-to-Peer Multicast

• Depends on cooperative
clients

•  Flexible, distributed
infrastructure

Overcast: Reliable Multicasting with an
Overlay Network

Authors
•  John Jannotti

•  Assistant Professor at Brown

• David Gifford
•  Computational Genomics at MIT

• Kirk Johnson
•  Frans Kaashoek

•  Professor at MIT
•  Founded SightPath Inc, acquired by Cisco

•  James O’Toole
•  Student of Kaashoek
•  MIT PhD
•  High school dropout

Motivation and Goals
• Deliver bandwidth-intensive content on demand
• How do we scale to support large numbers of clients for

long-running content?
• Applications

•  On demand high-quality video streams
•  Full-fidelity content

Approach
• Application-level multicast using an overlay network

• Distribution trees that maximize each node’s bandwidth

and efficiently utilize network substrate topology

• Global status at root that allows quick client joining while
still scalable

• Scalability and efficiency approaching IP Multicast

Design – Overview
•  Tree Building

• Maintaining Node Status

• Reliability

• Dissemination

Bandwidth Optimization – Tree Building
Protocol
• New node contacts root of
Overcast group, root set
as current

• Tries to get as far away
from root as possible
without sacrificing
bandwidth

when joining an archived group, such as the begin-
ning of the content. This feature allows a client to
“catch up” on live content by tuning back ten min-
utes into a stream, for instance. In practice, the
nature of a multicast group will most often deter-
mine the way it is accessed. A group containing
stock quotes will likely be accessed live. A group
containing a software package will likely be accessed
from start to finish; “live” would have no meaning
for such a group. Similarly, high-bandwidth con-
tent can not be distributed live when the bottleneck
bandwidth from client to server is too small. Such
content will always be accessed relative to its start.

We have implemented Overcast and used it to create
a data distribution system for businesses. Most cur-
rent users distribute high quality video that clients
access on demand. These businesses operate ge-
ographically distributed offices and need to dis-
tribute video to their employees. Before using Over-
cast, they met this need with low resolution Web-
accessible video or by physically reproducing and
mailing VHS tapes. Overcast allows these users
to distribute high-resolution video over the Inter-
net. Because high quality videos are large (Approx-
imately 1 Gbyte for a 30 minute MPEG-2 video),
it is important that the videos are efficiently dis-
tributed and available from a node with high band-
width to the client. To a lesser extent, Overcast is
also being used to broadcast live streams. Existing
Overcast networks typically contain tens of nodes
and are scheduled to grow to hundreds of nodes.

The main challenge in Overcast is the design and
implementation of protocols that can build effi-
cient, adaptive distribution trees without knowing
the details of the substrate network topology. The
substrate network’s abstraction provides the ap-
pearance of direct connectivity between all Over-
cast nodes. Our goal is to build distribution trees
that maximize each node’s bandwidth from the
source and utilize the substrate network topology
efficiently. For example, the Overcast protocols
should attempt to avoid sending data multiple times
over the same physical link. Furthermore, Overcast
should respond to transient failures or congestion in
the substrate network.

Consider the simple network depicted in Figure 1.
The network substrate consists of a root node (R),
two Overcast nodes (O), a router, and a number
of links. The links are labeled with bandwidth in
Mbit/s. There are three ways of organizing the root
and the Overcast nodes into a distribution tree. The
organization shown optimizes bandwidth by using

S

O

O
100

100

10

Figure 1: An example network and Overcast topology. The
straight lines are the links in the substrate network. These
links are labeled with bandwidth in Mbit/s. The curved lines
represent connections in the Overlay network. S represents
the source, O represents two Overcast nodes.

the constrained link only once.

The contributions of this paper are:

• A novel use of overlay networks. We describe
how reliable, highly-scalable, application-level
multicast can be provided by adding nodes that
have permanent storage to the existing network
fabric.

• A simple protocol for forming efficient and scal-
able distribution trees that adapt to changes in
the conditions of the substrate network without
requiring router support.

• A novel protocol for maintaining global status
at the root of a changing distribution tree. This
state allows clients to join an Overcast group
quickly while maintaining scalability.

• Results from simulations that show Overcast is
efficient. Overcast can scale to a large num-
ber of nodes; its efficiency approaches router-
based systems; it quickly adjusts to configura-
tion changes; and a root can track the status of
an Overcast network in a scalable manner.

Section 2 details Overcast’s relation to prior work.
Overcast’s general structure is examined in Section
3, first by describing overlay networks in general,
then providing the details of Overcast. Section
4 describes the operation of the Overcast network
performing reliable application-level multicast. Fi-
nally, Section 5 examines Overcast’s ability to build
a bandwidth-efficient overlay network for multicas-
ting and to adapt efficiently to changing network
conditions.

Bandwidth Optimization – Tree Building
Protocol
• New node contacts root of
Overcast group, root set
as current

• Tries to get as far away
from root as possible
without sacrificing
bandwidth

100 95

Bandwidth Optimization – Tree Building
Protocol
• New node contacts root of
Overcast group, root set
as current

• Tries to get as far away
from root as possible
without sacrificing
bandwidth

95

5 5

Bandwidth Optimization – Tree Building
Protocol
• New node contacts root of
Overcast group, root set
as current

• Tries to get as far away
from root as possible
without sacrificing
bandwidth

Maintaining Node Status – Up/Down
Protocol
• Keeps track of which nodes are currently up and which

are down

• Relies on periodic check ins with node’s parent.

• Check in notifications are propagated up the tree to the
root.
•  “Death certificates”
•  “Birth certificates”
•  Changes to reporting node’s “extra information”
•  Certificates/changes from node’s children

Maintaining Node Status – Up/Down
Protocol
• Potential race condition when

node chooses a new parent
•  Death certificate from former parent
•  Birth certificate from new parent
•  Birth certificate arrives just prior to

death certificate.

Maintaining Node Status – Up/Down
Protocol
• Potential race condition when

node chooses a new parent
•  Death certificate from former parent
•  Birth certificate from new parent
•  Birth certificate arrives just prior to

death certificate.

Maintaining Node Status – Up/Down
Protocol
• Potential race condition when

node chooses a new parent
•  Death certificate from former parent
•  Birth certificate from new parent
•  Birth certificate arrives just prior to

death certificate.

Birth

Maintaining Node Status – Up/Down
Protocol
• Potential race condition when

node chooses a new parent
•  Death certificate from former parent
•  Birth certificate from new parent
•  Birth certificate arrives just prior to

death certificate.

Birth

Death

Maintaining Node Status – Up/Down
Protocol
• Solution: Nodes maintain

sequence number for parent
changes.

Birth
Id: 6
Seq: 1

Death
Id: 6
Seq:0

Reliability – Root Replication
• Potential for overload and

reliability problems

• Replicated roots used in
round-robin fashion

•  Fault tolerance thorough
linear configuration at top of
hierarchy

Figure 2: A specially configured distribution topology that
allows either of the grey nodes to quickly stand in as the root
(black) node. All filled nodes have complete status informa-
tion about the unfilled nodes.

perform Overcast joins, therefore these nodes are
perfect candidates to be used in the DNS round-
robin approach to scalability. By choosing these
nodes, no further replication is necessary.

4.5 Joining a multicast group

To join a multicast group, a Web client issues an
HTTP GET request with the URL for a group. The
hostname of the URL names the root node(s). The
root uses the pathname of the URL, the location of
the client, and its database of the current status of
the Overcast nodes to decide where to connect the
client to the multicast tree. Because status informa-
tion is constantly propagated to the root, a decision
may be made quickly without further network traf-
fic, enabling fast joins.

Joining a group consists of selecting the best server
and redirecting the client to that server. The de-
tails of the server selection algorithm are beyond
the scope of this paper as considerable previous
work [3, 18] exists in this area. Furthermore, Over-
cast’s particular choices are constrained consider-
ably by a desire to avoid changes at the client. With-
out such a constraint simpler choices could have
been made, such as allowing clients to participate
directly in the Overcast tree building protocol.

Although we do not discuss server selection here, a
number of Overcast’s details exist to support this
important functionality, however it may actually be
implemented. A centralized root performing redi-
rections is convenient for an approach involving
large tables containing collected Internet topology
data. The up/down algorithm allows for redirec-
tions to nodes that are known to be functioning.

4.6 Multicasting with Overcast

We refer to reliable multicasting on an overcast net-
work as “overcasting”. Overcasting proceeds along

the distribution tree built by the tree protocol.
Data is moved between parent and child using TCP
streams. If a node has four children, four separate
connections are used. The content may be pipelined
through several generations in the tree. A large file
or a long-running live stream may be in transit over
tens of different TCP streams at a single moment,
in several layers of the distribution hierarchy.

If a failure occurs during an overcast, the distri-
bution tree will rebuild itself as described above.
After rebuilding the tree, the overcast resumes for
on-demand distributions where it left off. In order
to do so, each node keeps a log of the data it has
received so far. After recovery, a node inspects the
log and restarts all overcasts in progress.

Live content on the Internet today is typically
buffered before playback. This compensates for mo-
mentary glitches in network throughput. Overcast
can take advantage of this buffering to mask the
failure of a node being used to Overcast data. As
long as the failure occurs in a node that is not at the
edge of the Overcast network, an HTTP client need
not ever become aware that the path of data from
the root has been changed in the face of failure.

5 Evaluation

In this section, the protocols presented above are
evaluated by simulation. Although we have de-
ployed Overcast in the real world, we have not yet
deployed on a sufficiently large network to run the
experiments we have simulated.

To evaluate the protocols, an overlay network is sim-
ulated with increasing numbers of overcast nodes
while keeping the total number of network nodes
constant. Overcast should build better trees as
more nodes are deployed, but protocol overhead
may grow.

We use the Georgia Tech Internetwork Topology
Models [25] (GT-ITM) to generate the network
topologies used in our simulations. We use the
“transit-stub” model to obtain graphs that more
closely resemble the Internet than a pure random
construction. GT-ITM generates a transit-stub
graph in stages, first a number of random back-
bones (transit domains), then the random structure
of each back-bone, then random “stub” graphs are
attached to each node in the backbones.

We use this model to construct five different 600
node graphs. Each graph is made up of three tran-
sit domains. These domains are guaranteed to be

Dissemination – “Overcasting”
• Support for HTTP Clients
• Data moves along distribution tree using TCP streams
•  Failures during overcasting result in the distribution tree

being rebuilt
•  Distribution paused while rebuilding is in process
•  Designed around assumption that application level buffers will

mask most failures

Evaluation – Goals
• How well does Overcast utilize bandwidth?

• How does Overcast perform relative to IP Multicast?

• How resilient is Overcast to failures?

Evaluation – Methodology
• Evaluated using simulation because real-world

deployments too small
• Overlay network simulated with constant number of

network nodes with increasing numbers of Overcast
nodes

• Network topologies generated from Georgia Tech
Internetwork Models

•  Five different 600 node graphs

Evaluation – Bandwidth Utilization
•  Testing the efficiency of

Overcast

• Simulation artifact
•  Backbone routers turned on

1st in 600 node case
•  Put at top of tree

connected. Each transit domain consists of an aver-
age of eight stub networks. The stub networks con-
tain edges amongst themselves with a probability of
0.5. Each stub network consists of an average of 25
nodes, in which nodes are once again connected with
a probability of 0.5. These parameters are from the
sample graphs in the GT-ITM distribution; we are
unaware of any published work that describes pa-
rameters that might better model common Internet
topologies.

We extended the graphs generated by GT-ITM
with bandwidth information. Links internal to
the transit domains were assigned a bandwidth
of 45Mbits/s, edges connecting stub networks to
the transit domains were assigned 1.5Mbits/s, fi-
nally, in the local stub domain, edges were assigned
100Mbit/s. These reflect commonly used network
technology: T3s, T1s, and Fast Ethernet. All
measurements are averages over the five generated
topologies.

Empirical measurements from actual Overcast
nodes show that a single Overcast node can eas-
ily support twenty clients watching MPEG-1 videos,
though the exact number is greatly dependent on
the bandwidth requirements of the content. Thus
with a network of 600 overcast nodes, we are simu-
lating multicast groups of perhaps 12,000 members.

5.1 Tree protocol

The efficiency of Overcast depends on the position-
ing of Overcast nodes. In our first experiments, we
compare two different approaches to choosing po-
sitions. The first approach, labelled “Backbone”,
preferentially chooses transit nodes to contain Over-
cast nodes. Once all transit nodes are Overcast
nodes, additional nodes are chosen at random. This
approach corresponds to a scenario in which the
owner of the Overcast nodes places them strategi-
cally in the network. In the second, labelled “Ran-
dom”, we select all Overcast nodes at random. This
approach corresponds to a scenario in which the
owner of Overcast nodes does not pay attention to
where the nodes are placed.

The goal of Overcast’s tree-building protocol is to
optimize the bottleneck bandwidth available back
to the root for all nodes. The goal is to provide
each node with the same bandwidth to the root that
the node would have in an idle network. Figure 3
compares the sum of all nodes’ bandwidths back to
the root in Overcast networks of various sizes to

0 200 400 600
Number of overcast nodes

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

os
sib

le
 b

an
dw

id
th

 a
ch

ie
ve

d

Backbone
Random

Figure 3: Fraction of potential bandwidth provided by
Overcast.

the sum of all nodes’ bandwidths back to the root
in an optimal distribution tree using router-based
software. This indicates how well Overcast performs
compared to IP Multicast.

The main observation is that, as expected, the back-
bone strategy for placing Overcast nodes is more
effective than the random strategy, but the results
of random placement are encouraging nonetheless.
Even a small number of deployed Overcast nodes,
positioned at random, provide approximately 70%-
80% of the total possible bandwidth.

It is extremely encouraging that, when using the
backbone approach, no node receives less bandwidth
under Overcast than it would receive from IP Mul-
ticast. However some enthusiasm must be withheld,
because a simulation artifact has been left in these
numbers to illustrate a point.

Notice that the backbone approach and the random
approach differ in effectiveness even when all 600
nodes of the network are Overcast nodes. In this
case the same nodes are participating in the proto-
col, but better trees are built using the backbone
approach. This illustrates that the trees created by
the tree-building protocol are not unique. The back-
bone approach fares better by this metric because
in our simulations backbone nodes were turned on
first. This allowed backbone nodes to preferrentially
form the “top” of the tree. This indicates that in
future work it may be beneficial to extend the tree-
building protocol to accept hints that mark certain
nodes as “backbone” nodes. These nodes would
preferentially form the core of the distribution tree.

Overcast appears to perform quite well for its in-
tended goal of optimizing available bandwidth, but

Evaluation – Efficiency
• Network Load

•  Number of times a particular
piece of data must traverse a
network link to reach all
Overcast nodes

•  IP Multicast takes one less
than number of nodes

• Ratio of Overcast network
load to IP Multicast load

0 200 400 600
Number of overcast nodes

0

1

2

3

4

A
ve

ra
ge

 w
as

te

Random
Backbone

Figure 4: Ratio of the number of times a packet must “hit
the wire” to be propagated through an Overcast network to a
lower bound estimate of the same measure for IP Multicast.

it is reasonable to wonder what costs are associated
with this performance.

To explore this question we measure the network
load imposed by Overcast. We define network load
to be the number of times that a particular piece of
data must traverse a network link to reach all Over-
cast nodes. In order to compare to IP Multicast
Figure 4 plots the ratio of the network load imposed
by Overcast to a lower bound estimate of IP Mul-
ticast’s network load. For a given set of nodes, we
assume that IP Multicast would require exactly one
less link than the number of nodes. This assumes
that all nodes are one hop away from another node,
which is unlikely to be true in sparse topologies, but
provides a lower bound for comparison.

Figure 4 shows that for Overcast networks with
greater than 200 nodes Overcast imposes somewhat
less than twice as much network load as IP Multi-
cast. In return for this extra load Overcast offers
reliable delivery, immediate deployment, and future
flexibility. For networks with few Overcast nodes,
Overcast appears to impose a considerably higher
network load than IP Multicast. This is a result of
our optimistic lower bound on IP Multicast’s net-
work load, which assumes that 50 randomly placed
nodes in a 600 node network can be spanned by 49
links.

Another metric to measure the effectiveness of an
application-level multicast technique is stress, pro-
posed in [16]. Stress indicates the number of times
that the same data traverses a particular physical
link. By this metric, Overcast performs quite well
with average stresses of between 1 and 1.2. We do
not present detailed analysis of Overcast’s perfor-
mance by this metric, however, because we believe

0 200 400 600
Overcast nodes

0

10

20

30

40

50

R
ou

nd
s

||

||

||
||

|| ||
||

||

||

|
|

|

|
| |

| |

|

|| Lease = 20 Rounds
| Lease = 10 Rounds

Lease = 5 Rounds

Figure 5: Number of rounds to reach a stable distribution
tree as a function of the number of overcast nodes and the
length of the lease period.

that network load is more telling for Overcast. That
is, Overcast has quite low scores for average stress,
but that metric does not describe how often a longer
route was taken when a shorter route was available.

Another question is how fast the tree protocol con-
verges to a stable distribution tree, assuming a sta-
ble underlying network. This is dependent on three
parameters. The round period controls how long a
node that has not yet determined a stable position
in the hierarchy will wait before evaluating a new set
of potential parents. The reevaluation period deter-
mines how long a node will wait before reevaluating
its position in the hierarchy once it has obtained a
stable position. Finally the lease period determines
how long a parent will wait to hear from a child
before reporting the child’s death.

For convenience, we measure all convergence times
in terms of the fundamental unit, the round time.
We also set the reevaluation period and lease pe-
riod to the same value. Figure 5 shows how long
Overcast requires to converge if an entire Overcast
network is simultaneously activated. To demon-
strate the effect of a changing reevaluation and lease
period, we plot for the “standard” lease time—10
rounds, as well as longer and shorter periods. Lease
periods shorter than five rounds are impractical be-
cause children actually renew their leases a small
random number of rounds (between one and three)
before their lease expires to avoid being thought
dead. We expect that a round period on the order of
1-2 seconds will be practical for most applications.

We next measure convergence times for an existing
Overcast network in which overcast nodes are added
or fail. We simulate overcast networks of various

Evaluation – Resiliency
• Measure convergence

time using “round time” as
fundamental unit

• Authors expect round time
to be approximately 1-2
seconds

• Uses backbone approach 0 200 400 600
Overcast nodes

0

10

20

30

40

50

R
ou

nd
s

||

||
||

||
||

||

||

|
| |

| |
|

|

|| ||
|| || || || ||

|
| | | |

|
|

|| Ten new nodes
| Five new nodes

One new node
|| Ten nodes fail
| Five nodes fail

One node fails

Figure 6: Number of rounds to recover a stable distribution
tree as a function of the number of nodes that change state
and the number of nodes in the network.

sizes until they quiesce, add and remove Overcast
nodes, and then simulate the network until it qui-
esces once again. We measure the time, in rounds,
for the network to quiesce after the changes. We
measure for various numbers of additions and re-
movals allowing us to assess the dependence of con-
vergence on how many nodes have changed state.
We measure only the backbone approach.

Figure 6 plots convergence times (using a 10 round
lease time) against the number of overcast nodes in
the network. The convergence time for node fail-
ures is quite modest. In all simulations the Over-
cast network reconverged after less than three lease
times. Furthermore, the reconvergence time scaled
well against both the number of nodes failing and
the total number of nodes in the overcast network.
In neither case was the convergence time even lin-
early affected.

For node additions, convergence times do appear
more closely linked to the size of the Overcast net-
work. This makes intuitive sense because new nodes
are navigating the network to determine their best
location. Even so, in all simulations fewer than
five lease times are required. It is important to
note that an Overcast network continues to func-
tion even while stabilizing. Performance may be
somewhat impacted by increased measurement traf-
fic and by TCP setup and tear down overhead as
parents change, but such disruptions are localized.

5.2 Up/Down protocol

The goal of the up/down algorithm is to minimize
the bandwidth required at the root node while main-
taining timely status information for the entire net-
work. Factors that affect the amount of bandwidth

0 200 400 600
Overcast nodes (before additions)

0

20

40

60

 C
er

tif
ic

at
es

||
|| || ||

|| ||
||

| | |
| | | |

|| 10 new node
| 5 new node

1 new node

Figure 7: Certificates received at the root in response to
node additions.

used include the size of the overcast network and
the rate of topology changes. Topology changes oc-
cur when the properties of the underlying network
change, nodes fail, or nodes are added. Therefore
the up/down algorithm is evaluated by simulating
overcast networks of various sizes in which various
numbers of failures and additions occur.

To assess the up/down protocol’s ability to provide
timely status updates to the root without undue
overhead we keep track of the number of certificates
(for both “birth” and “death”) that reach the root
during the previous convergence tests. This is in-
dicative of the bandwidth required at the root node
to support an overcast network of the given size and
is dependent on the amount of topology change in-
duced by the additions and deletions.

Figure 7 graphs the number of certificates received
by the root node in response to new nodes being
brought up in the overcast network. Remember, the
root may receive multiple certificates per node ad-
dition because the addition is likely to cause some
topology reconfiguration. Each time a node picks
a new parent that parent propagates a birth cer-
tificate. These results indicate that the number
of certificates is quite modest: certainly no more
than four certificates per node addition, usually ap-
proximately three. What is more important is that
the number of certificates scales more closely to the
number of new nodes than the size of the overcast
network. This gives evidence that overcast can scale
to large networks.

Similarly, Overcast requires few certificates to react
to node failures. Figure 8 shows that in the common
case, no more than four certificates are required per
node failure. Again, because the number of certifi-
cates is proportional to the number of failures rather

Discussion and Thoughts

• Deployable

•  Infrastructure requirements

• Acceptable fault tolerance?

•  Rebuild time
•  Delays due to polling acceptable?

SplitStream: High-Bandwidth Multicast in
Cooperative Environments

Authors
• Miguel Castro

•  Microsoft Research
•  Pastry, Scribe

• Peter Druschel
•  Rice University
•  Pastry, Scribe

• Anne-Marie Kermarrec
•  Pastry, Scribe

• Atul Singh
•  Student of Druschel
•  NEC Research

Motivation
• Conventional tree-based multicast not well matched to a

cooperative environment

• Only a relatively small number of interior nodes carry the
burden of most multicast messages

• Applications
•  Peer exchanging resources in cooperative in environment
•  Decentralized, generic infrastructure

Approach
• Striping content across a forest of interior-node-disjoint

multicast trees
•  peers contribute only as much forwarding bandwidth as they

receive

• Accommodate different bandwidth capacities
•  Focus on low overhead for maintenance

Routing using Pastry
• Each member is given a

unique nodeId and each
multicast group is given a
unique key

• Nodes maintain a routing
table and a leaf set
•  Prefix routing
•  Proximity-aware
•  Leaf-sets are the set of

neighboring nodes

indegree (i.e., ∀i ∈ N : Ci ≥ Ii). (This condition may be un-
necessarily strong in more controlled settings, for example,
in a corporate intranet.) Additionally, we need a mecha-
nism to discourage free loading such that most participants
satisfy the stronger condition. In some settings, it may be
sufficient to have the SplitStream implementation enforce
the condition in the local node. Stronger mechanisms may
use a trusted execution platform like Microsoft’s Palladium
or a mechanism based on incentives [28]. This is an inter-
esting area of future work.

3. BACKGROUND
SplitStream is implemented using tree-based application-

level multicast. There are many proposals for how application-
level multicast trees can be built and maintained [8, 19, 40,
13, 32, 22, 6, 23]. In this paper, we consider the implemen-
tation of SplitStream using Scribe [13] and Pastry [33]. It
could also be implemented using a different overlay protocol
and group communication system; for example, Bayeux on
Tapestry [39, 40] or Scribe on CAN [15]. Before describ-
ing the SplitStream design, we provide a brief overview of
Pastry and Scribe.

3.1 Pastry
Pastry is a scalable, self-organizing structured peer-to-

peer overlay network similar to CAN [31], Chord [36], and
Tapestry [39]. In Pastry, nodes and objects are assigned ran-
dom identifiers (called nodeIds and keys, respectively) from
a large id space. NodeIds and keys are 128 bits long and can
be thought of as a sequence of digits in base 2b (b is a con-
figuration parameter with a typical value of 3 or 4). Given
a message and a key, Pastry routes the message to the node
with the nodeId that is numerically closest to the key, which
is called the key’s root. This simple capability can be used
to build higher-level services like a distributed hash table
(DHT) or an application-level group communication system
like Scribe.

In order to route messages, each node maintains a routing
table and a leaf set. A node’s routing table has about log2bN
rows and 2b columns. The entries in row r of the routing
table refer to nodes whose nodeIds share the first r digits
with the local node’s nodeId. The (r + 1)th nodeId digit of
a node in column c of row r equals c. The column in row
r corresponding to the value of the (r + 1)th digit of the
local node’s nodeId remains empty. At each routing step, a
node normally forwards the message to a node whose nodeId
shares with the key a prefix that is at least one digit longer
than the prefix that the key shares with the present node’s
id. If no such node is known, the message is forwarded to a
node whose nodeId shares a prefix with the key as long as
the current node’s nodeId but is numerically closer. Figure 3
shows the path of an example message.

Each Pastry node maintains a set of neighboring nodes in
the nodeId space (called the leaf set), both to ensure reliable
message delivery, and to store replicas of objects for fault
tolerance. The expected number of routing hops is less than
log2bN . The Pastry overlay construction observes proxim-
ity in the underlying Internet. Each routing table entry is
chosen to refer to a node with low network delay, among all
nodes with an appropriate nodeId prefix. As a result, one
can show that Pastry routes have a low delay penalty: the
average delay of Pastry messages is less than twice the IP
delay between source and destination [11]. Similarly, one

d46a1c

d462ba

d4213f

d13da3

65a1fc

nodeId

key

nodeIdnodeId

keykey

route(m,d46a1c)

0 2 -1

Figure 3: Routing a message from the node with
nodeId 65a1fc to key d46a1c. The dots depict the
nodeIds of live nodes in Pastry’s circular namespace.

can show the local route convergence of Pastry routes: the
routes of messages sent to the same key from nearby nodes
in the underlying Internet tend to converge at a nearby in-
termediate node. Both of these properties are important for
the construction of efficient multicast trees, described below.
A full description of Pastry can be found in [33, 11, 12].

3.2 Scribe
Scribe [13, 14] is an application-level group communica-

tion system built upon Pastry. A pseudo-random Pastry key,
known as the groupId, is chosen for each multicast group. A
multicast tree associated with the group is formed by the
union of the Pastry routes from each group member to the
groupId’s root (which is also the root of the multicast tree).
Messages are multicast from the root to the members using
reverse path forwarding [17].

The properties of Pastry ensure that the multicast trees
are efficient. The delay to forward a message from the root
to each group member is low due to the low delay penalty of
Pastry routes. Pastry’s local route convergence ensures that
the load imposed on the physical network is small because
most message replication occurs at intermediate nodes that
are close in the network to the leaf nodes in the tree.

Group membership management in Scribe is decentral-
ized and highly efficient, because it leverages the existing,
proximity-aware Pastry overlay. Adding a member to a
group merely involves routing towards the groupId until the
message reaches a node in the tree, followed by adding the
route traversed by the message to the group multicast tree.
As a result, Scribe can efficiently support large numbers of
groups, arbitrary numbers of group members, and groups
with highly dynamic membership.

The latter property, combined with an anycast [14] prim-
itive recently added to Scribe, can be used to perform dis-
tributed resource discovery. Briefly, any node in the overlay
can anycast to a Scribe group by routing the message to-
wards the groupId. Pastry’s local route convergence ensures
that the message reaches a group member near the mes-
sage’s sender with high probability. A full description and
evaluation of Scribe multicast can be found in [13]. Scribe
anycast is described in [14].

301

Multicast and Group Membership with
Scribe

• Scribe is an application-level multicast infrastructure

• Built upon Pastry’s peer-to-peer routing substrate

• Group management

• Multicast tree creation
•  Joins Pastry routes of each group member to common rendezvous

point (groupID)

Design – Stripes and Forest Construction
• Content is divided into k

stripes
• Each stripe is given its

own Scribe multicast
tree

• Pastry provides prefix
routing to ensure that
each node is an interior
node in one tree.

•  Inbound constraints met,
need addition
mechanism for outbound

Figure 4: SplitStream’s forest construction. The
source splits the content and multicasts each stripe
in its designated tree. Each stripe’s stripeId starts
with a different digit. The nodeIds of interior nodes
share a prefix with the stripeId, thus they must be
leaves in the other trees, e.g., node M with a nodeId
starting with 1 is an interior node in the tree for
the stripeId starting with 1 and a leaf node in other
trees.

4. SPLITSTREAM DESIGN
In this section, we describe the design of SplitStream. We

begin with the construction of interior-node-disjoint trees
for each of the stripes. Then, we discuss how SplitStream
balances the forwarding capacity across nodes, such that the
bandwidth constraints of each node are observed.

4.1 Building interior-node-disjoint trees
SplitStream uses a separate Scribe multicast tree for each

of the k stripes. A set of trees is said to be interior-node-
disjoint if each node is an interior node in at most one
tree, and a leaf node in the other trees. SplitStream ex-
ploits the properties of Pastry routing to construct interior-
node-disjoint trees. Recall that Pastry normally forwards a
message towards nodes whose nodeIds share progressively
longer prefixes with the message’s key. Since a Scribe tree
is formed by the routes from all members to the groupId,
the nodeIds of all interior nodes share some number of dig-
its with the tree’s groupId. Therefore, we can ensure that k
Scribe trees have a disjoint set of interior nodes simply by
choosing groupIds for the trees that all differ in the most
significant digit. Figure 4 illustrates the construction. We
call the groupId of a stripe group the stripeId of the stripe.

We can choose a value of b for Pastry that achieves the
value of k suitable for a particular application. Setting
2b = k ensures that each participating node has an equal
chance of becoming an interior node in some tree. Thus,
the forwarding load is approximately balanced. If b is cho-
sen such that k = 2i, i < b, it is still possible to ensure this
fairness by exploiting certain properties of the Pastry rout-
ing table, but we omit the details due to space constraints.
Additionally, it is fairly easy to change the Pastry implemen-
tation to route using an arbitrary base that is not a power
of 2. Without loss of generality, we assume that 2b = k in
the rest of this paper.

4.2 Limiting node degree
The resulting forest of Scribe trees is interior-node-disjoint

and satisfies the nodes’ constraints on the inbound band-
width. To see this, observe that a node’s inbound band-
width is proportional to the desired indegree, which is the
number of stripes that the node chooses to receive. It is

assumed that each node receives and forwards at least the
stripe whose stripeId shares a prefix with its nodeId, be-
cause the node may have to serve as an interior node for
that stripe.

However, the forest does not necessarily satisfy nodes’
constraints on outbound bandwidth; some nodes may have
more children than their forwarding capacity. The number
of children that attach to a node is bounded by its indegree
in the Pastry overlay, which is influenced by the physical
network topology. This number may exceed a node’s for-
warding capacity if the node does not limit its outdegree.

Scribe has a built-in mechanism (called “push-down”) to
limit a node’s outdegree. When a node that has reached
its maximal outdegree receives a request from a prospec-
tive child, it provides the prospective child with a list of
its current children. The prospective child then seeks to be
adopted by the child with lowest delay. This procedure con-
tinues recursively down the tree until a node is found that
can take another child. This is guaranteed to terminate
successfully with a single Scribe tree provided each node is
required to take on at least one child.

However, this procedure is not guaranteed to work in
SplitStream. The reason is that a leaf node in one tree may
be an interior node in another tree, and it may have already
reached its outdegree limit with children in this other tree.
Next, we describe how SplitStream resolves this problem.

4.3 Locating parents
The following algorithm is used to resolve the case where

a node that has reached its outdegree limit receives a join
request from a prospective child. First, the node adopts the
prospective child regardless of the outdegree limit. Then,
it evaluates its new set of children to select a child to re-
ject. This selection is made in an attempt to maximize the
efficiency of the SplitStream forest.

First, the node looks for children to reject in stripes whose
stripeIds do not share a prefix with the local node’s nodeId.
(How the node could have acquired such a child in the first
place will become clear in a moment.) If the prospective
child is among them, it is selected; otherwise, one is chosen
randomly from the set. If no such child exists, the current
node is an interior node for only one stripe tree, and it selects
the child whose nodeId has the shortest prefix match with
that stripeId. If multiple such nodes exist and the prospec-
tive child is among them, it is selected; otherwise, one is
chosen randomly from the set. The chosen child is then no-
tified that it has been orphaned for a particular stripeId.
This is exemplified in Figure 5.

The orphaned child then seeks to locate a new parent
in up to two steps. In the first step, the orphaned child
examines its former siblings and attempts to attach to a
random former sibling that shares a prefix match with the
stripeId for which it seeks a parent. The former sibling
either adopts or rejects the orphan, using the same criteria
as described above. This “push-down” process continues
recursively down the tree until the orphan either finds a new
parent or no children share a prefix match with the stripeId.
If the orphan has not found a parent the second step uses
the spare capacity group.

4.4 Spare capacity group
If the orphan has not found a parent, it sends an anycast

message to a special Scribe group called the spare capacity

302

Design – “Push-down”
• Scribe’s “push-down” process involves recursively

pushing the prospective child down to children.
• Modified “push-down”

•  Prospective child always admitted,
•  Looks to reject a child whose stripeId do not share prefix (or

shortest match) with local node’s nodeId

001*

0800 080*

089* 08B* 081* 9*

0800 0800 0800 1800

Node 001*
requests to join
stripe 0800

Design – “Push-down”
• Scribe’s “push-down” process involves recursively

pushing the prospective child down to children.
• Modified “push-down”

•  Prospective child always admitted,
•  Looks to reject a child whose stripeId do not share prefix (or

shortest match) with local node’s nodeId

001*

0800 080*

089* 08B* 081* 9*

0800 0800 0800 orphan on
1800

Node 080* takes
001* as a child
and drop 9*

Design – “Push-down”
• Scribe’s “push-down” process involves recursively

pushing the prospective child down to children.
• Modified “push-down”

•  Prospective child always admitted,
•  Looks to reject a child whose stripeId do not share prefix (or

shortest match) with local node’s nodeId

001*

0800

080*

089* 08B* 081*

0800 0800 0800

Design – “Push-down”
• Scribe’s “push-down” process involves recursively

pushing the prospective child down to children.
• Modified “push-down”

•  Prospective child always admitted
•  Looks to reject a child whose stripeId do not share prefix (or

shortest match) with local node’s nodeId

001*

0800

080*

089* 08B* 081*

0800 0800 0800

085*

0800

Node 085*
requests to join
stripe 0800

Design – “Push-down”
• Scribe’s “push-down” process involves recursively

pushing the prospective child down to children.
• Modified “push-down”

•  Prospective child always admitted,
•  Looks to reject a child whose stripeId do not share prefix (or

shortest match) with local node’s nodeId

001*

0800

080*

089* 08B* 081*

0800 0800 0800

085*

Orphan on 0800

Node 080* takes
085* as a child
and drops 001*,
since it has
shorter prefix
match

Design – Spare Capacity Group
• Used when an orphaned

node can’t locate a parent

• Nodes have spare
forwarding capacity

• Checks for cycles

Figure 5: Handling of prospective children by a node that has reached its outdegree limit. Circles represent
nodes and the numbers close to them are their nodeIds (* is a wildcard). Solid lines indicate that the bottom
node is a child of the top node and the number close to the line is the stripeId. Dashed lines represent
requests to join a stripe. The node with id 080* has reached its outdegree limit of 4. (1) Node 001* requests
to join stripe 0800. (2) Node 080* takes 001* as a child and drops 9*, which was a child in stripe 1800 that
does not share the first digit with 080*. (3) Then node 085* requests to join stripe 0800. (4) Node 080*
takes 085* as a child and drops 001*, which has a shorter prefix match with stripe 0800 than other children.

group. All SplitStream nodes that have less children in stripe
trees than their forwarding capacity limit are members of
this group. Scribe delivers this anycast message to a node
in the spare capacity group tree that is near the orphan in
the physical network. This node starts a depth-first search
(DFS) of the spare capacity group tree by forwarding the
message to a child. If the node has no children or they have
all been checked, the node checks whether it receives one
of the stripes which the orphaned child seeks to receive (in
general, this is the set of stripe groups that the orphan has
not already joined). If so, it verifies that the orphan is not
an ancestor in the corresponding stripe tree, which would
create a cycle. To enable this test, each node maintains its
path to the root of each stripe that it receives.

If both tests succeed, the node takes on the orphan as a
child. If the node reaches its outdegree limit as a result, it
leaves the spare capacity group. If one of the tests fails, the
node forwards the message to its parent and the DFS of the
spare capacity tree continues until an appropriate member
is found. This is illustrated in Figure 6.

The properties of Scribe trees and the DFS of the spare
capacity tree ensure that the parent is near the orphan in
the physical network. This provides low delay and low link
stress. However, it is possible for the node to attach to a
parent that is already an interior node in another stripe tree.
If this parent fails, it may cause the temporary loss of more
than one stripe for some nodes. We show in Section 5 that
only a small number of nodes and stripes are affected on
average.

Anycasting to the spare capacity group may fail to locate
an appropriate parent for the orphan even after an appropri-
ate number of retries with sufficient timeouts. If the spare
capacity group is empty, the SplitStream forest construction
is infeasible because an orphan remains after all forwarding
capacity has been exhausted. In this case, the application
on the orphaned node is notified that there is no forwarding
capacity left in the system.

Anycasting can fail even when there are group members
with available forwarding capacity in the desired stripe. This
can happen if attaching the orphan to receive the stripe from
any of these members causes a cycle because the member is
the orphan itself or a descendant of the orphan. We solve
this problem as follows. The orphan locates any leaf in the
desired stripe tree that is not its descendant. It can do this
by anycasting to the stripe tree searching for a leaf that is

Figure 6: Anycast to the spare capacity group.
Node 0 anycasts to the spare capacity group to find
a parent for the stripe whose identifier starts with
6. The request is routed by Pastry towards the root
of the spare capacity group until it reaches node 1,
which is already in the tree. Node 1 forwards the
request to node 2, one of its children. Since 2 has no
children, it checks if it can satisfy node 0’s request.
In this case, it cannot because it does not receive
stripe 6. Therefore, it sends the request back to
node 1 and node 1 sends it down to its other child.
Node 3 can satisfy 0’s request and replies to 0.

not its descendant. Such a leaf is guaranteed to exist because
we require a node to forward the stripe whose stripeId starts
with the same digit as its nodeId. The orphan replaces the
leaf on the tree and the leaf becomes an orphan. The leaf
can attach to the stripe tree using the spare capacity group
because this will not cause a cycle.

Finally, anycasting can fail if no member of the spare ca-
pacity group provides any of the desired stripes. In this case,
we declare failure and notify the application. As we argue
next, this is extremely unlikely to happen when the sufficient
condition for forest construction (Condition 2) holds.

4.5 Correctness and complexity
Next, we argue informally that SplitStream can build a

forest with very high probability provided the set of nodes N
satisfies the sufficient condition for feasibility (Condition 2)
and there is a modest amount of spare capacity in the sys-
tem. The analysis assumes that all nodes in N join the forest

303

Design – Correctness
• Argue that forests can

be constructed with
high probability given
the sufficient condition
for feasibility (on right)

at the same time and that communication is reliable to en-
sure that all the spare capacity in the system is available in
the spare capacity group. It also assumes that nodes do not
leave the system either voluntarily or due to failures. Split-
Stream includes mechanisms to deal with violations of each
of these assumptions but these problems may block some
parents that are available to forward stripes to orphans,
e.g., they may be unreachable by an orphan due to com-
munication failures. If these problems persist, SplitStream
may be unable to ensure feasibility even if Condition 2 holds
at every instant. We ignore these issues in this analysis but
present simulation results that show SplitStream can cope
with them in practice.

The construction respects the bounds on forwarding ca-
pacity and indegree because nodes reject children beyond
their capacity limit and nodes do not seek to receive more
stripes than their desired indegree. Additionally, there are
no cycles by construction because an orphan does not attach
to a parent whose path to the root includes the orphan. The
issue is whether all nodes can receive as many distinct stripes
as they desire.

When node i joins the forest, it selects Ii stripes uniformly
at random. (The stripe whose stripeId starts with the same
digit as i’s nodeId is always selected but the nodeId is se-
lected randomly with uniform probability from the id space.)
Then i joins the spare capacity tree advertising that it will
be able to forward the selected stripes and attempts to join
the corresponding stripe trees. We will next estimate the
probability that the algorithm leaves an orphan that cannot
find a desired stripe.

There are two ways for a node i to acquire a parent for
each selected stripe s: (1) joining the stripe tree directly
without using the spare capacity group, or (2) anycasting to
the spare capacity group. If s is the stripe whose stripeId
starts with the same digit as i’s nodeId, i is guaranteed to
find a parent using (1) after being pushed down zero or more
times and this may orphan another node. The algorithm
guarantees that i never needs to use (2) to locate a parent
on this stripe. The behavior is different when i uses (1) to
locate a parent on another stripe; it may fail to find a parent
but it will never cause another node to become an orphan.

When a node i first joins a stripe s, it uses (1) to find a
parent. If the identifiers of i and s do not share the first
digit, i may fail to find a parent for s after being pushed
down at most hs times (where hs is the height of s’s tree)
but it does not cause any other node to become an orphan.
If the trees are balanced we expect that hs is O(log|N |).

If the identifiers of i and s share the same digit, i is guar-
anteed to find a parent using (1) but it may orphan another
node j on the same stripe or on a different stripe r. In this
case, j attempts to use (1) to acquire a parent on the lost
stripe. There are three sub-cases: (a) j looses a stripe r
(r != s), (b) j looses stripe s and the identifiers of j and s
do not share the first digit, and (c) j looses stripe s and the
identifiers of j and s share the first digit. The algorithm
ensures that in case (a), the first digit in j’s nodeId does
not match the first digit in r’s stripeId. This ensures that
this node j does not orphan any other node when it uses (1)
to obtain a parent for r. Similarly, j will not orphan any
other node in case (b). In cases (a) and (b), j either finds a
parent or fails to find a parent after being pushed down at
most hr or hs times. In case (c), we can view j as resuming
the walk down s’s tree that was started by i.

Therefore, in all cases, i’s first join of stripe s results in at
most one orphan j (not necessarily i = j) that uses anycast
to find a parent for a stripe r (not necessarily r = s) after
O(log|N |) messages. This holds even with concurrent joins.

If an orphan j attempts to locate a parent for stripe r by
anycasting to the spare capacity group, it may fail to find
a node in the spare capacity group that receives stripe r.
We call the probability of this event Pf . It is also possible
that all nodes in the spare capacity group that receive r
are descendants of j. Our construction ensures that the
identifiers of j and r do not share the first digit. Therefore,
the expected number of descendants of j for stripe r should
be O(1) and small if trees are well balanced. The technique
that handles this case succeeds in finding a parent for j with
probability one and leaves an orphan on stripe r that has no
descendants for stripe r. In either case, we end up with a
probability of failure Pf and an expected cost of O(log|N |)
messages on success.

We will compute an upper bound on Pf . We start by
assuming that we know the set 1, ..., l of nodes in the spare
capacity group when the anycast is issued and their desired
indegrees I1, ..., Il. We can compute an exact value for Pf

with this information:

Pf = (1 − I1

k
)(1 − I2

k
)...(1 − Il

k
)

If all nodes join at least Imin stripes, we can compute an
upper bound on Pf that does not require knowledge of the
desired indegrees of nodes in the spare capacity group:

Pf ≤ (1 − Imin

k
)l

We can assume that each node i in the spare capacity
group has spare capacity less than k; otherwise, Condition 2
implies that Ii = k and i can satisfy the anycast request.
Since the spare capacity in the system C =

∑
∀i∈N Ci −∑

∀i∈N Ii is the minimum capacity available in the spare
capacity group at any time, l ≥ C/(k − 1) and so

Pf ≤ (1 − Imin

k
)

C
k−1

This bound holds even with concurrent anycasts because we
use the minimum spare capacity in the system to compute
the bound.

There are at most |N | node joins and each node joins at
most k stripes. Thus the number of anycasts issued during
forest construction that may fail is bounded by |N | × k.
Since the probability of A or B occurring is less than or
equal to the probability of A plus the probability of B, the
following is a rough upper bound on the probability that the
algorithm fails to build a feasible forest

|N |× k × (1 − Imin

k
)

C
k−1

The probability of failure is very low even with a mod-
est amount of spare capacity in the system. For example,
the predicted probability of failure is less than 10−11 with
|N | = 1, 000, 000, k = 16, Imin = 1, and C = 0.01 × |N |.
The probability of failure decreases when Imin increases, for
example, it is 10−13 in the same setting when Imin = 8 and
C = 0.001 × |N |. When the desired indegree of all nodes

304

from any subset of the k stripes with video quality propor-
tional to the number of stripes received. Hence, if an interior
node in a stripe tree should fail then clients deprived of the
stripe are able to continue displaying the media stream at
reduced quality until the stripe tree is repaired. Such an en-
coding also allows low-bandwidth clients to receive the video
at lower quality by explicitly requesting less stripes.

Another example is the multicasting of file data with era-
sure coding [9]. Each data block is encoded using erasure
codes to generate k blocks such that only a (large) subset
of the k blocks is required to reconstitute the original block.
Each stripe is then used to multicast a different one of the k
blocks. Participants receive all stripes and once a sufficient
subset of the blocks is received the clients are able to recon-
stitute the original data block. If a client misses a number
of blocks from a particular stripe for a period of time (while
the stripe multicast tree is being repaired after an internal
node has failed) the client can still reconstitute the original
data blocks due to the redundancy. An interesting alter-
native is the use of rateless codes [24, 26], which provide
a simple approach to coordinating redundancy, both across
stripes and within each stripe.

Applications also control when to create and tear down a
SplitStream forest. Our experimental results indicate that
the maximum node stress to construct a forest and distribute
1 Mbyte of data is significantly lower than the node stress
placed on a centralized server distributing the same data.
Therefore, it is perfectly reasonable to create a forest to
distribute a few megabytes of data and then tear it down.
The results also show that the overhead to maintain a forest
is low even with high churn. Therefore, it is also reasonable
to create long-lived forests. The ideal strategy depends on
the fraction of time that a forest is used to transmit data.

2.4 Properties
Next, we discuss necessary and sufficient conditions for

the feasibility of forest construction by any algorithm and
relate them with what SplitStream can achieve.

Let N be the set of nodes and k be the number of stripes.
Each node i ∈ N wants to receive Ii (0 < Ii ≤ k) distinct
stripes and is willing to forward a stripe to up to Ci other
nodes. We call Ii the node’s desired indegree and Ci its
forwarding capacity. There is a set of source nodes (S ⊆ N)
whose elements originate one or more of the k stripes (i.e.,
1 ≤ |S| ≤ k). The forwarding capacity Cs of each source
node s ∈ S must at least equal the number of stripes that s
originates, Ts.

Definition 1. Given a set of nodes N and a set of sources
S ⊆ N , forest construction is feasible if it is possible to con-
nect the nodes such that each node i ∈ N receives Ii distinct
stripes and has no more than Ci children.

The following condition is obviously necessary for the fea-
sibility of forest construction by any algorithm.

Condition 1. If forest construction is feasible, the sum
of the desired indegrees cannot exceed the sum of the for-
warding capacities:

∑

∀i∈N

Ii ≤
∑

∀i∈N

Ci (1)

Condition 1 is necessary but not sufficient for the feasibil-
ity of forest construction, as the simple example in Figure 2

illustrates. The incoming arrows in each node in the figure
correspond to its desired indegree and the outgoing arrows
correspond to its forwarding capacity. The total forwarding
capacity matches the total desired indegree in this example
but it is impossible to supply both of the rightmost nodes
with two distinct stripes. The node with forwarding capac-
ity three has desired indegree one and, therefore, it can only
provide the same stripe to all its children.

Sources

Figure 2: An example illustrating that condition 1
is not sufficient to ensure feasibility of a SplitStream
forest.

Condition 2 prevents this problem. It is sufficient to en-
sure feasibility because it prevents the concentration of for-
warding capacity in nodes that are unable to forward all
stripes.

Condition 2. A sufficient condition for the feasibility of
forest construction is for Condition 1 to hold and for all
nodes whose forwarding capacity exceeds their desired inde-
gree to receive or originate all k stripes, i.e.,

∀i : Ci > Ii ⇒ Ii + Ti = k. (2)

This is a natural condition in a cooperative environment
because nodes are unlikely to spend more resources improv-
ing the quality of service perceived by others than on im-
proving the quality of service that they perceive. Addition-
ally, inbound bandwidth is typically greater than or equal
to outbound bandwidth in consumer Internet connections.

Given a set of nodes that satisfy Condition 2, the Split-
Stream algorithm can build a forest with very high proba-
bility provided there is a modest amount of spare capacity
in the system. The probability of success increases with
the minimum number of stripes that nodes receives, Imin,
and the total amount of spare capacity, C =

∑
∀i∈N Ci −∑

∀i∈N Ii. We derive the following rough upper bound on
the probability of failure in Section 4.5:

|N |× k × (1 − Imin

k
)

C
k−1 (3)

As indicated by the upper bound formula, the probability
of success is very high even with a small amount of spare
capacity in the system. Additionally, we expect Imin to be
large for most applications. For example, erasure coding for
reliable distribution of data and MDC for video distribu-
tion perform poorly if peers do not receive to most stripes.
Therefore, we expect configurations where all peers receive
all stripes to be common. In this case, the algorithm can
guarantee efficient forest construction with probability one
even if there is no spare capacity.

In an open cooperative environment, it is important to
address the issue of free loaders, which appear to be preva-
lent in Gnutella [2]. In such an environment, it is desirable
to strengthen Condition 1 to require that the forwarding ca-
pacity of each node be greater than or equal to its desired

300

Evaluation – Goals
• What is the overhead of maintaining the forest?

• How well does its multicast perform compared to IP and

Scribe?

• How resilient is SplitStream to failures?

Evaluation – Experimental Setup
• Network Simulation

•  Packet level, discrete event simulator

• Network Topologies
•  GATech

•  Transit-stub topology
•  5050 hierarchically arranged routers

•  Mercator
•  Topology model based on measurements of Internet using Mercator

System
•  102,639 routers

•  CorpNet
•  Generated using measurements from Microsoft corporate network
•  298 routers

Evaluation – Forest Construction
Overhead
•  Efficiency metrics

•  Node stress
•  Link stress

•  Point (x,y) indicates that a fraction y of all nodes have stress <= x

0

20

40

60

80

100

1 10 100 1,000 10,000 100,000 1,000,000
Bandwidth (Kbps)

Pe
rc

en
ta

ge
 o

f H
os

ts

Outbound
Inbound

Figure 7: Cumulative distribution of bottleneck
bandwidth for both inbound and outbound network
links of Gnutella peers.

cast to all descendants. We can avoid maintaining this state
by taking advantage of the prefix routing properties of Pas-
try. Cycles are possible only if some parent does not share
a longer prefix with a stripeId than one of its children for
that stripe. Therefore, nodes need to store and update path
information only in such cases. This optimisation reduces
the overhead of forest construction by up to 40%.

The second optimisation improves anycast performance.
When a node joins the SplitStream forest, it may need to
perform several anycasts to find a parent for different stripes.
Under the optimization, these anycasts are batched; the
node uses a single anycast to find parents for multiple stripes.
This optimization can reduce the number of anycasts per-
formed during forest construction by up to a factor of eight.

The third optimization improves the DFS traversal of the
anycast tree. A parent adds the list of its children to an
anycast message before forwarding the message to a child. If
the child is unable to satisfy the anycast request, it removes
itself from the list and sends the message to one of its siblings
(avoiding another visit to the parent).

5.2 Forest construction overhead
The first set of experiments measured the overhead of for-

est construction without node failures. They started from
a Pastry overlay with 40,000 nodes and built a SplitStream
forest with all overlay nodes. All the nodes joined the spare
capacity and the stripe groups at the same time. The over-
heads would be lower with less concurrency.

We used two metrics to measure the overhead: node stress
and link stress. Node stress quantifies the load on nodes.
A node’s stress is equal to the number of messages that it
receives. Link stress quantifies the load on the network. The
stress of a physical network link is equal to the number of
messages sent over the link.

Node stress: Figures 8 and 9 show the cumulative distribu-
tion of node stress during forest construction with different
configurations on the GATech topology. Figure 8 shows re-
sults for the 16×y configurations and Figure 9 shows results
for d×d and Gnutella. A point (x, y) in the graph indicates
that a fraction y of all the nodes in the topology has node
stress less than or equal to x. Table 1 shows the maximum,
mean and median node stress for these distributions. The
results were similar on the other topologies.

Figure 8 and Table 1 show that the node stress drops as

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Node Stress

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 n
od

es

16 x NB
16 x 32
16 x 18
16 x 16

Figure 8: Cumulative distribution of node stress
during forest construction with 40,000 nodes on
GATech.

the spare capacity in the system increases. With more spare
capacity, nodes are orphaned less often and so there are less
pushdowns and anycasts. The 16 × NB configuration has
the lowest node stress because there are no pushdowns or
anycasts. The 16 × 16 configuration has the highest node
stress because each node uses an anycast to find a parent for
8 stripes on average. The nodes with the maximum node
stress in all configurations (other than 16 × NB) are those
with nodeIds closest to the identifier of the spare capacity
group. Table 1 shows that increasing the spare capacity of
the 16 × 16 configuration by only 12.5% results in a factor
of 2.7 decrease in the maximum node stress.

Conf. 16 × 16 16 × 18 16 × 32 16 × NB d × d Gnut.
Max 2971 1089 663 472 2532 1054
Mean 57.2 52.6 35.3 16.9 42.1 56.7

Median 49.9 47.4 30.9 12 36.6 54.2

Table 1: Maximum, mean and median node stress
during forest construction with 40,000 nodes on
GATech.

Figure 9 shows that the node stress is similar with Gnutella
and 16×16. Gnutella has a significant amount spare capac-
ity but not all members of the spare capacity group receive
all stripes, which increases the length of the DFS traversals
of the anycast tree. d × d has the same spare capacity as
16× 16 but it has lower node stress because nodes join only
9 stripe groups on average instead of 16.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Node Stress

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 n
od

es

d x d
Gnutella
16 x 16

Figure 9: Cumulative distribution of node stress
during forest construction with 40,000 nodes on
GATech.

306

0

20

40

60

80

100

1 10 100 1,000 10,000 100,000 1,000,000
Bandwidth (Kbps)

Pe
rc

en
ta

ge
 o

f H
os

ts

Outbound
Inbound

Figure 7: Cumulative distribution of bottleneck
bandwidth for both inbound and outbound network
links of Gnutella peers.

cast to all descendants. We can avoid maintaining this state
by taking advantage of the prefix routing properties of Pas-
try. Cycles are possible only if some parent does not share
a longer prefix with a stripeId than one of its children for
that stripe. Therefore, nodes need to store and update path
information only in such cases. This optimisation reduces
the overhead of forest construction by up to 40%.

The second optimisation improves anycast performance.
When a node joins the SplitStream forest, it may need to
perform several anycasts to find a parent for different stripes.
Under the optimization, these anycasts are batched; the
node uses a single anycast to find parents for multiple stripes.
This optimization can reduce the number of anycasts per-
formed during forest construction by up to a factor of eight.

The third optimization improves the DFS traversal of the
anycast tree. A parent adds the list of its children to an
anycast message before forwarding the message to a child. If
the child is unable to satisfy the anycast request, it removes
itself from the list and sends the message to one of its siblings
(avoiding another visit to the parent).

5.2 Forest construction overhead
The first set of experiments measured the overhead of for-

est construction without node failures. They started from
a Pastry overlay with 40,000 nodes and built a SplitStream
forest with all overlay nodes. All the nodes joined the spare
capacity and the stripe groups at the same time. The over-
heads would be lower with less concurrency.

We used two metrics to measure the overhead: node stress
and link stress. Node stress quantifies the load on nodes.
A node’s stress is equal to the number of messages that it
receives. Link stress quantifies the load on the network. The
stress of a physical network link is equal to the number of
messages sent over the link.

Node stress: Figures 8 and 9 show the cumulative distribu-
tion of node stress during forest construction with different
configurations on the GATech topology. Figure 8 shows re-
sults for the 16×y configurations and Figure 9 shows results
for d×d and Gnutella. A point (x, y) in the graph indicates
that a fraction y of all the nodes in the topology has node
stress less than or equal to x. Table 1 shows the maximum,
mean and median node stress for these distributions. The
results were similar on the other topologies.

Figure 8 and Table 1 show that the node stress drops as

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Node Stress

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 n
od

es

16 x NB
16 x 32
16 x 18
16 x 16

Figure 8: Cumulative distribution of node stress
during forest construction with 40,000 nodes on
GATech.

the spare capacity in the system increases. With more spare
capacity, nodes are orphaned less often and so there are less
pushdowns and anycasts. The 16 × NB configuration has
the lowest node stress because there are no pushdowns or
anycasts. The 16 × 16 configuration has the highest node
stress because each node uses an anycast to find a parent for
8 stripes on average. The nodes with the maximum node
stress in all configurations (other than 16 × NB) are those
with nodeIds closest to the identifier of the spare capacity
group. Table 1 shows that increasing the spare capacity of
the 16 × 16 configuration by only 12.5% results in a factor
of 2.7 decrease in the maximum node stress.

Conf. 16 × 16 16 × 18 16 × 32 16 × NB d × d Gnut.
Max 2971 1089 663 472 2532 1054
Mean 57.2 52.6 35.3 16.9 42.1 56.7

Median 49.9 47.4 30.9 12 36.6 54.2

Table 1: Maximum, mean and median node stress
during forest construction with 40,000 nodes on
GATech.

Figure 9 shows that the node stress is similar with Gnutella
and 16×16. Gnutella has a significant amount spare capac-
ity but not all members of the spare capacity group receive
all stripes, which increases the length of the DFS traversals
of the anycast tree. d × d has the same spare capacity as
16× 16 but it has lower node stress because nodes join only
9 stripe groups on average instead of 16.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Node Stress

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 n
od

es

d x d
Gnutella
16 x 16

Figure 9: Cumulative distribution of node stress
during forest construction with 40,000 nodes on
GATech.

306

Evaluation – Multicast Performance
• Compared performance

to Scribe and IP
Multicast

Link stress: We start by presenting results of experiments
that measured link stress during multicast with different
SplitStream forest sizes. Table 3 shows the results of these
experiments with the 16×16 configuration in GATech. When
a SplitStream node is added to the system, it uses two ad-
ditional LAN links (one on each direction) and it induces
a link stress of 16 in both. Adding nodes also causes an
increase on the link stress of router-router links because the
router network remains fixed. Since the majority of links
for the larger topologies are LAN links, the median link
stress remains constant and the mean link stress grows very
slowly. The maximum link stress increases because the link
stress in router-router links increases. This problem affects
all application-level multicast systems.

Num. 500 1k 3k 10k 20k 30k 40k
Mean 17.6 18.3 17.7 17.9 18.7 20.22 20.4
Med. 16 16 16 16 16 16 16
Max 131 233 509 845 1055 1281 1411
Links 0.13 0.23 0.52 0.89 0.96 0.97 0.98

Table 3: Maximum, mean and median link stress for
used links and fraction of links (Links) used during
multicast with the 16 × 16 configuration on GATech
with varying number of nodes.

The next set of experiments compared the link stress dur-
ing multicast with different SplitStream configurations and
40,000 nodes on GATech. Table 4 shows the maximum,
mean and median link stress for used links, and the fraction
of links used in these experiments. The results show that
the link stress tends to decrease when the spare capacity
increases. However, the absence of bounds on forwarding
capacity in (16 × NB) causes a concentration of stress in a
smaller number of links, which results in increased average
and maximum stress for used links. The average link stress
in d × d and Gnutella is lower because nodes receive less
stripes on average.

Conf. 16 × 16 16 × 18 16 × 32 16 × NB d × d Gnut.
Max 1411 1124 886 1616 982 1032
Mean 20.5 19 19 20 11.7 18.2
Med. 16 16 16 16 9 16
Links .98 .98 .97 .94 .97 .97

Table 4: Maximum, mean, and median link stress
for used links and fraction of links (Links) used dur-
ing multicast with different SplitStream configura-
tions and 40,000 nodes on GATech.

We picked the SplitStream configuration that performs
worst (16 × 16) and compared its performance with Scribe,
IP multicast, and a centralized system using unicast. Fig-
ure 12 shows the cumulative distribution of link stress during
multicast for the different systems on GATech with 40,000
nodes. A point (x, y) in the graph indicates that a fraction
y of all the links in the topology has link stress less than or
equal to x. Table 5 shows the maximum, mean and median
link stress for used links, and the fraction of links used.

The results show that SplitStream uses a significantly
larger fraction of the links in the topology to multicast mes-
sages than any of the other systems: SplitStream uses 98%
of the links in the topology, IP multicast and the central-
ized unicast use 43%, and Scribe uses 47%. This is mostly
because SplitStream uses both outbound and inbound LAN
links for all nodes whereas IP multicast and the centralized

Conf. centralized Scribe IP 16 × 16
Max 639984 3990 16 1411
Mean 128.9 39.6 16 20.5

Median 16 16 16 16
Links .43 .47 .43 .98

Table 5: Maximum, mean, and median link stress
for used links and fraction of links (Links) used by
centralized unicast, Scribe, IP, and SplitStream mul-
ticast with 40,000 nodes on GATech.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Link stress

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 lin
ks

16 x 16

IP Multicast

(a) SplitStream vs IP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Link stress

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 lin
ks

16 x 16

Scribe

(b) SplitStream vs Scribe

Figure 12: Cumulative distribution of link stress
during multicast with 40,000 nodes on GATech.

unicast only use inbound LAN links. Scribe uses all inbound
LAN links but it only uses outbound LAN links for a small
fraction of nodes (the interior nodes in the tree). We ob-
served the same behavior on the other topologies.

SplitStream loads the links it uses less than Scribe. Ta-
ble 5 shows that the average stress in links used by Split-
Stream is close to the average stress in links used by IP
multicast (28% worse). The average link stress in links used
by Scribe is 247% worse than that achieved by IP multi-
cast. SplitStream also achieves a maximum link stress that
is almost a factor of 3 lower than Scribe’s. The compar-
ison would be even more favorable to SplitStream with a
configuration with more spare capacity.

We also observed this behavior in the other topologies.
The average stress in links used by SplitStream is at most
13% worse than the average stress in links used by IP mul-

308

Evaluation – Resilience to Node Failures
•  Tested performance under catastrophic failure
•  Failed 2,500 of 10,000 nodes 10 seconds into

simulation

ceives. If all these paths are node-disjoint, a single node fail-
ure can deprive i of at most one stripe (until the stripe tree
repairs). SplitStream may fail to guarantee node-disjoint
paths when nodes use anycast to find a parent but this is
not a problem as the next results show.

Conf. 16 × 16 16 × 32 d × d 16 × NB Gnut.
Max 6.8 6.6 5.3 1 7.2
Mean 2.1 1.7 1.5 1 2.4

Median 2 2 1 1 2

Table 6: Worst case maximum, mean, and median
number of stripes lost at each node when a single
node fails.

In a 40,000-node SplitStream forest on GATech, the mean
and median number of lost stripes when a random node fails
is 1 for all configurations. However, nodes may loose more
than one stripe when some nodes fail. Table 6 shows the
max, median, and mean number of stripes lost by a node
when its worst case ancestor fails. The number of stripes
lost is very small for most nodes, even when the worst case
ancestor fails. This shows that SplitStream is very robust
to node failures.

Catastrophic failures: The next experiment evaluated
the resilience of SplitStream to catastrophic failures. We
created a 10,000-node SplitStream forest with the 16 × 16
configuration on GATech and started multicasting data at
the rate of one packet per second per stripe. We failed 2,500
nodes 10s into the simulation.

Both Pastry and SplitStream use heartbeats and probes
to detect node failures. Pastry used the techniques described
in [25] to control probing rates; it was tuned to achieve 1%
loss rate with a leaf set probing period of 30s. SplitStream
nodes send heartbeats to their children and to their parents.
The heartbeats sent to parents allow nodes to detect when
a child fails so they can rejoin the spare capacity group. We
configured SplitStream nodes to send these hearbeats every
30s. In both Pastry and SplitStream, heartbeats and probes
are suppressed by other traffic.

Figure 15 shows the maximum, average, and minimum
number of stripes received by each node during the experi-
ment. Nodes loose a large number of stripes with the large
scale failure but SplitStream and Pastry recover quickly.
Most nodes receive packets on at least 14 stripes after 30s
(one failure detection period) and they receive all stripes af-
ter 60s. Furthermore, all nodes receive all stripes after less
than 3 minutes.

Figure 16 breaks down the average number of messages
sent per second per node during the experiment. The line
labeled Pastry shows the Pastry overhead and the line la-
beled Pastry+SplitStream represents the total overhead, i.e.,
the average number of Pastry and SplitStream control mes-
sages. The figure also shows the total number of messages
including data packets (labeled Pastry+SplitStream+Data).

The results show that nodes send only 1.6 control mes-
sages per second before the failure. This overhead is very
low.

The overhead increases after the failure while Pastry and
SplitStream repair. Even after repair, the overhead is higher
than before the failure because Pastry uses a self-tuning
mechanism to adapt routing table probing rates [25]. This
mechanism detects a large number of failures in a short pe-

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200 220
Time (seconds)

N
um

be
r o

f S
tri

pe
s

Maximum
Average
Minimum

Figure 15: Maximum, average, and minimum num-
ber of stripes received when 25% out of 10,000 nodes
fail on GATech.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200 220
Time (seconds)

N
um

be
r o

f m
es

sa
ge

s
pe

r s
ec

on
d

pe
r n

od
e

Pastry
Pastry + SplitStream
Pastry + SplitStream + Data

Figure 16: Number of messages per second per node
when 25% out of 10,000 nodes fail on GATech.

riod and increases the probing rate (to the maximum in this
case). Towards the end of the trace, the overhead starts to
dip because the self-tuning mechanism forgets the failures it
registered.

High churn: The final simulation experiment evaluated the
performance and overhead of SplitStream with high churn
in the overlay. We used a real trace of node arrivals and
departures from a study of Gnutella [34]. The study mon-
itored 17,000 unique nodes in the Gnutella overlay over a
period of 60 hours. It probed each node every seven min-
utes to check if it was still part of the Gnutella overlay. The
average session time over the trace was approximately 2.3
hours and the number of active nodes in the overlay varied
between 1300 and 2700. Both the arrival and departure rate
exhibit large daily variations.

We ran the experiment on the GATech topology. Nodes
joined a Pastry overlay and failed according to the trace.
Twenty minutes into the trace, we created a SplitStream
forest with all the nodes in the overlay at that time. We used
the 16 × 20 configuration. From that time on, new nodes
joined the Pastry overlay and then joined the SplitStream
forest. We sent a data packet to each stripe group every 10
seconds. Figure 17 shows the average and 0.5th percentile of
the number of stripes received by each node over the trace.

The results show that SplitStream performs very well even
under high churn: 99.5% of the nodes receive at least 75%
of the stripes (12) almost all the time. The average number

310

ceives. If all these paths are node-disjoint, a single node fail-
ure can deprive i of at most one stripe (until the stripe tree
repairs). SplitStream may fail to guarantee node-disjoint
paths when nodes use anycast to find a parent but this is
not a problem as the next results show.

Conf. 16 × 16 16 × 32 d × d 16 × NB Gnut.
Max 6.8 6.6 5.3 1 7.2
Mean 2.1 1.7 1.5 1 2.4

Median 2 2 1 1 2

Table 6: Worst case maximum, mean, and median
number of stripes lost at each node when a single
node fails.

In a 40,000-node SplitStream forest on GATech, the mean
and median number of lost stripes when a random node fails
is 1 for all configurations. However, nodes may loose more
than one stripe when some nodes fail. Table 6 shows the
max, median, and mean number of stripes lost by a node
when its worst case ancestor fails. The number of stripes
lost is very small for most nodes, even when the worst case
ancestor fails. This shows that SplitStream is very robust
to node failures.

Catastrophic failures: The next experiment evaluated
the resilience of SplitStream to catastrophic failures. We
created a 10,000-node SplitStream forest with the 16 × 16
configuration on GATech and started multicasting data at
the rate of one packet per second per stripe. We failed 2,500
nodes 10s into the simulation.

Both Pastry and SplitStream use heartbeats and probes
to detect node failures. Pastry used the techniques described
in [25] to control probing rates; it was tuned to achieve 1%
loss rate with a leaf set probing period of 30s. SplitStream
nodes send heartbeats to their children and to their parents.
The heartbeats sent to parents allow nodes to detect when
a child fails so they can rejoin the spare capacity group. We
configured SplitStream nodes to send these hearbeats every
30s. In both Pastry and SplitStream, heartbeats and probes
are suppressed by other traffic.

Figure 15 shows the maximum, average, and minimum
number of stripes received by each node during the experi-
ment. Nodes loose a large number of stripes with the large
scale failure but SplitStream and Pastry recover quickly.
Most nodes receive packets on at least 14 stripes after 30s
(one failure detection period) and they receive all stripes af-
ter 60s. Furthermore, all nodes receive all stripes after less
than 3 minutes.

Figure 16 breaks down the average number of messages
sent per second per node during the experiment. The line
labeled Pastry shows the Pastry overhead and the line la-
beled Pastry+SplitStream represents the total overhead, i.e.,
the average number of Pastry and SplitStream control mes-
sages. The figure also shows the total number of messages
including data packets (labeled Pastry+SplitStream+Data).

The results show that nodes send only 1.6 control mes-
sages per second before the failure. This overhead is very
low.

The overhead increases after the failure while Pastry and
SplitStream repair. Even after repair, the overhead is higher
than before the failure because Pastry uses a self-tuning
mechanism to adapt routing table probing rates [25]. This
mechanism detects a large number of failures in a short pe-

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200 220
Time (seconds)

N
um

be
r o

f S
tri

pe
s

Maximum
Average
Minimum

Figure 15: Maximum, average, and minimum num-
ber of stripes received when 25% out of 10,000 nodes
fail on GATech.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200 220
Time (seconds)

N
um

be
r o

f m
es

sa
ge

s
pe

r s
ec

on
d

pe
r n

od
e

Pastry
Pastry + SplitStream
Pastry + SplitStream + Data

Figure 16: Number of messages per second per node
when 25% out of 10,000 nodes fail on GATech.

riod and increases the probing rate (to the maximum in this
case). Towards the end of the trace, the overhead starts to
dip because the self-tuning mechanism forgets the failures it
registered.

High churn: The final simulation experiment evaluated the
performance and overhead of SplitStream with high churn
in the overlay. We used a real trace of node arrivals and
departures from a study of Gnutella [34]. The study mon-
itored 17,000 unique nodes in the Gnutella overlay over a
period of 60 hours. It probed each node every seven min-
utes to check if it was still part of the Gnutella overlay. The
average session time over the trace was approximately 2.3
hours and the number of active nodes in the overlay varied
between 1300 and 2700. Both the arrival and departure rate
exhibit large daily variations.

We ran the experiment on the GATech topology. Nodes
joined a Pastry overlay and failed according to the trace.
Twenty minutes into the trace, we created a SplitStream
forest with all the nodes in the overlay at that time. We used
the 16 × 20 configuration. From that time on, new nodes
joined the Pastry overlay and then joined the SplitStream
forest. We sent a data packet to each stripe group every 10
seconds. Figure 17 shows the average and 0.5th percentile of
the number of stripes received by each node over the trace.

The results show that SplitStream performs very well even
under high churn: 99.5% of the nodes receive at least 75%
of the stripes (12) almost all the time. The average number

310

Discussion
• Practical/Deployable?

•  Compare to Overcast
•  Complexity of mechanism

•  Is it safe to assume there is enough bandwidth to carry
each stripe?

• Will all clients be cooperative and trusting?
•  What happens with misbehaving clients?

• Does SplitStream actually deliver on its promises?

