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Large-scale File Systems
How Large?

• Google’s file system in 2009 (Jeff Dean, LADIS ’09)
- 200+ clusters
- Thousands of machines per cluster
- Pools of thousands of clients
- More than 4 Petabytes of data
- 40 GB/s I/O load

• Amazon’s S3 in 2010 (Werner Vogels’ blog)
- Over 100 billion objects
- Over 120,000 storage operations per second



“Large” can be different

• Range of the network
- Wide/Local area

• Organizing model
- Centralized/P2P/Layered ...

• Environment
- Trusted/Untrusted infrastructure

• Abundance of resources
- Bandwidth, storage space, ...

• The goals: 
- Availability, reliability, scalability, ...



“Large” can be different



“Large” can be different

GFS OceanStore

Infrastructure Datacenter Wide-area

Organizing Model Centralized Fully distributed

Target Users Google Anyone

Environment Trusted Untrusted

Availability High High

Reliability High High

Recovery Self-maintaining Self-maintaining



Google File System
The Authors

• Sanjay Ghemawat

• Google Fellow, worked on GFS, MapReduce, 
BigTable, ...

• PhD from MIT (Barbara Liskov)

• Howard Gobioff

• PhD from CMU (Garth Gibson)

• Shun-Tak Leung

• PhD from UW



Motivation

• A file system for Google’s infrastructure

• Clusters of commodity PCs

• Component failures are common

• Program bugs (System/Apps)

• Storage failures (Memory/Disk)

• Network failure

• Power outage

• Other human errors ...
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•



Motivation

• A file system for Google’s infrastructure

• Clusters of commodity PCs

• Component failures are common

• Trusted environment

• Files are huge

• Most mutations are append

•



Design Choices

• Fault tolerant

• ... but no need for BFT

• Fast failure recovery

• Relaxed consistency guarantee

• Selective optimization (block size, append, ...)
- “Small files must be supported, but we need not optimize 
for them.”
- “Small writes at arbitrary positions in a file are supported 
but do not have to be efficient.”

• Co-design with applications



Architecture

• Bullet

• Explanation

• Bullet



Architecture

• Interface

• Chunkserver

• Master

• Mutation



Interface

• Standard operations

• Create, Delete, Open, Close, Read, Write

• Record append

• Snapshot



Chunkserver

• Runs on top of Linux file system

• Basic unit: Chunks

• 64 MB each

• A file in GFS consists of several chunks

• Each chunk is a Linux file

• Eliminates fragmentation problems

• Replicated for reliability (3 by default)

• The primary: serializes mutations



Master

• Controls system-wide activities
- Leases, replica placement, garbage collection, ...

• Stores all metadata in memory, 64 bytes / chunk
- File/chunk namespaces
- File-to-chunk mapping
- Replica locations

• The good part: simple, fast

• Not so good?
- Throughput
- Single point of failure



More on Master

• Optimizations

• Throughput
- Minimize operations at master
- Fast recovery using logs & checkpoints

• Single point of failure
- Replicates itself
- “Shadow” masters



Mutation

• Bullet

• Explanation

• Bullet
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Mutation

• Bullet

• Explanation

• Bullet



A Few Issues

• Consistency Guarantee

• Data Integrity

• Replica Placement

• File Deletion



Consistency Guarantee

• Consistent: all clients will always see the same data

• Defined: consistent and mutated in entirety

• Semantics of (concurrent) Write/Append

• Write: Consistent but undefined

• Append: Defined, interspersed with inconsistent
- “Atomically at least once”



Data Integrity

• Checksum

• 32-bit for each 64-KB block

• Independent verification, not chunk-wise 
comparison
- Recall the semantics of Append



Replica Placement

• Below-average utilization

• Load balancing

• Distributes “recent” creations

• Avoid hot spot

• Places replicas across racks

• Reliability

• Bandwidth utilization



File Deletion

• Rename to hidden file upon deletion

• Permanently remove after 3 days

• Garbage collection: scan periodically to 
remove orphan chunks



Performance

• Micro-benchmark

• Google’s working environment



Performance
Micro-benchmark

- 16 Chunkservers, up to 16 clients

- Links: 100 Mbps host-switch, 1 Gbps inter-switch



Performance
Micro-benchmark



Performance
Clusters

• 300~500 operations per second on master

• 300~500 MB/s read, 100 MB/s write



Discussion

• A big engineering success

• Anything new?

• Highly specialized design

• Comparison with others?

• Questions?



Pond: the OceanStore Prototype
The Authors

• Sean Rhea - PhD student     Meraki

• Patrick Eaton - PhD student     EMC

• Dennis Geels - PhD student     Google

• Hakim Weatherspoon - PhD student     ... here!

• Ben Zhao - PhD student     UCSB

• John Kubiatowicz - The professor

• PhD from MIT (Anant Agarwal)



OceanStore’s Vision

• Universal availability

• Transparency

• High durability

• Decentralized 
storage

• Self-maintainable

• Strong consistency

• Strong security

• Untrusted 
infrastructure

“As a rough estimate, we imagine providing service to 
roughly 1010 users, each with at least 10,000 files. 

OceanStore must therefore support over 1014 files.”

                          -- The OceanStore paper (ASPLOS ’00)



System Overview



Inside the System

• Data Object: “File” in Pond

• Tapestry: Distributed storage

• Primary Replica: Inner-ring

• Archival Storage: Erasure codes

• Secondary Replica: Caching



Data Object

• B-Tree of read-only blocks

• Every version is kept forever

• Copy on write



Tapestry 

• DHTs & Storage systems

• Chord - Cooperative File System (MIT)

• Pastry - PAST (Microsoft & Rice)

• Tapestry - OceanStore (Berkeley)

• Distributed Object Location and Routing

• Uses GUID to locate objects

• Self-organizing

• Tapestry’s locality: Locates the closest replica



Primary Replica

• Serializes & applies changes

• A set of servers: inner ring
- Assigned by the responsible party

• Byzantine-fault-tolerant protocol
- Tolerates at most f faulty nodes with 3f+1 nodes
- MAC within inner ring, public-key outside
- Proactive threshold signatures

• How to durably store the order of updates?
- Antiquity: Log-based method (Eurosys ’07)



Archival Storage

• Erasure code
- Divide a block into m fragments
- Encode into n (n > m) fragments
- Recover from any m fragment
- Fragments are distributed uniformly and 
deterministically
(n = 32, m = 16 in Pond)

• Distributes data across machines

• Efficiency: Erasure code vs. Replication



Secondary Replica (Caching)

• Reconstruction from fragments is 
expensive

• An alternative: whole-block caching

• Greedy local caching: LRU in Pond

• Contact the primary for the latest version



Handling Updates

• Sends update to

• Primary tier

• Random replicas



Handling Updates

• Primary:

• Byzantine 
agreement

• Secondary:

• Epidemically 
propagation
(Gossiping)



Handling Updates

• Multicast from 
the primary



Implementation

• Based on SEDA

• Implemented in Java

• Event driven, each subsystem as a stage



Implementation

“The current code base of Pond contains approximately 50,000 
semicolons and is the work of five core graduate 

student developers and as many undergraduate interns.”



Performance
Archival Storage



Performance
Latency Breakdown



Performance
Andrew Benchmark

• Five phases:

• Create target directory (Write)

• Copy files (Write)

• Examine file status (Read)

• Examine file data (Read)

• Compile & link the files (Read+Write)



Performance
Andrew Benchmark

Times are in seconds



Discussion

• OceanStore: a great vision

• Pond: a working subset of the vision

• Cool functionalities, but some are 
expensive

• Performance upon failures?

• Questions?


