
Staggeringly Large File Systems

Presented by Haoyan Geng

Large-scale File Systems
How Large?

• Google’s file system in 2009 (Jeff Dean, LADIS ’09)
- 200+ clusters
- Thousands of machines per cluster
- Pools of thousands of clients
- More than 4 Petabytes of data
- 40 GB/s I/O load

• Amazon’s S3 in 2010 (Werner Vogels’ blog)
- Over 100 billion objects
- Over 120,000 storage operations per second

“Large” can be different

• Range of the network
- Wide/Local area

• Organizing model
- Centralized/P2P/Layered ...

• Environment
- Trusted/Untrusted infrastructure

• Abundance of resources
- Bandwidth, storage space, ...

• The goals:
- Availability, reliability, scalability, ...

“Large” can be different

“Large” can be different

GFS OceanStore

Infrastructure Datacenter Wide-area

Organizing Model Centralized Fully distributed

Target Users Google Anyone

Environment Trusted Untrusted

Availability High High

Reliability High High

Recovery Self-maintaining Self-maintaining

Google File System
The Authors

• Sanjay Ghemawat

• Google Fellow, worked on GFS, MapReduce,
BigTable, ...

• PhD from MIT (Barbara Liskov)

• Howard Gobioff

• PhD from CMU (Garth Gibson)

• Shun-Tak Leung

• PhD from UW

Motivation

• A file system for Google’s infrastructure

• Clusters of commodity PCs

• Component failures are common

• Program bugs (System/Apps)

• Storage failures (Memory/Disk)

• Network failure

• Power outage

• Other human errors ...

Motivation

• A file system for Google’s infrastructure

• Clusters of commodity PCs

• Component failures are common

• Trusted environment

• Malicious users? Not a big problem ...

•

Motivation

• A file system for Google’s infrastructure

• Clusters of commodity PCs

• Component failures are common

• Trusted environment

• Files are huge

• Most mutations are append

•

Design Choices

• Fault tolerant

• ... but no need for BFT

• Fast failure recovery

• Relaxed consistency guarantee

• Selective optimization (block size, append, ...)
- “Small files must be supported, but we need not optimize
for them.”
- “Small writes at arbitrary positions in a file are supported
but do not have to be efficient.”

• Co-design with applications

Architecture

• Bullet

• Explanation

• Bullet

Architecture

• Interface

• Chunkserver

• Master

• Mutation

Interface

• Standard operations

• Create, Delete, Open, Close, Read, Write

• Record append

• Snapshot

Chunkserver

• Runs on top of Linux file system

• Basic unit: Chunks

• 64 MB each

• A file in GFS consists of several chunks

• Each chunk is a Linux file

• Eliminates fragmentation problems

• Replicated for reliability (3 by default)

• The primary: serializes mutations

Master

• Controls system-wide activities
- Leases, replica placement, garbage collection, ...

• Stores all metadata in memory, 64 bytes / chunk
- File/chunk namespaces
- File-to-chunk mapping
- Replica locations

• The good part: simple, fast

• Not so good?
- Throughput
- Single point of failure

More on Master

• Optimizations

• Throughput
- Minimize operations at master
- Fast recovery using logs & checkpoints

• Single point of failure
- Replicates itself
- “Shadow” masters

Mutation

• Bullet

• Explanation

• Bullet

Mutation

• Bullet

• Explanation

• Bullet

Mutation

• Bullet

• Explanation

• Bullet

Mutation

• Bullet

• Explanation

• Bullet

A Few Issues

• Consistency Guarantee

• Data Integrity

• Replica Placement

• File Deletion

Consistency Guarantee

• Consistent: all clients will always see the same data

• Defined: consistent and mutated in entirety

• Semantics of (concurrent) Write/Append

• Write: Consistent but undefined

• Append: Defined, interspersed with inconsistent
- “Atomically at least once”

Data Integrity

• Checksum

• 32-bit for each 64-KB block

• Independent verification, not chunk-wise
comparison
- Recall the semantics of Append

Replica Placement

• Below-average utilization

• Load balancing

• Distributes “recent” creations

• Avoid hot spot

• Places replicas across racks

• Reliability

• Bandwidth utilization

File Deletion

• Rename to hidden file upon deletion

• Permanently remove after 3 days

• Garbage collection: scan periodically to
remove orphan chunks

Performance

• Micro-benchmark

• Google’s working environment

Performance
Micro-benchmark

- 16 Chunkservers, up to 16 clients

- Links: 100 Mbps host-switch, 1 Gbps inter-switch

Performance
Micro-benchmark

Performance
Clusters

• 300~500 operations per second on master

• 300~500 MB/s read, 100 MB/s write

Discussion

• A big engineering success

• Anything new?

• Highly specialized design

• Comparison with others?

• Questions?

Pond: the OceanStore Prototype
The Authors

• Sean Rhea - PhD student Meraki

• Patrick Eaton - PhD student EMC

• Dennis Geels - PhD student Google

• Hakim Weatherspoon - PhD student ... here!

• Ben Zhao - PhD student UCSB

• John Kubiatowicz - The professor

• PhD from MIT (Anant Agarwal)

OceanStore’s Vision

• Universal availability

• Transparency

• High durability

• Decentralized
storage

• Self-maintainable

• Strong consistency

• Strong security

• Untrusted
infrastructure

“As a rough estimate, we imagine providing service to
roughly 1010 users, each with at least 10,000 files.

OceanStore must therefore support over 1014 files.”

 -- The OceanStore paper (ASPLOS ’00)

System Overview

Inside the System

• Data Object: “File” in Pond

• Tapestry: Distributed storage

• Primary Replica: Inner-ring

• Archival Storage: Erasure codes

• Secondary Replica: Caching

Data Object

• B-Tree of read-only blocks

• Every version is kept forever

• Copy on write

Tapestry

• DHTs & Storage systems

• Chord - Cooperative File System (MIT)

• Pastry - PAST (Microsoft & Rice)

• Tapestry - OceanStore (Berkeley)

• Distributed Object Location and Routing

• Uses GUID to locate objects

• Self-organizing

• Tapestry’s locality: Locates the closest replica

Primary Replica

• Serializes & applies changes

• A set of servers: inner ring
- Assigned by the responsible party

• Byzantine-fault-tolerant protocol
- Tolerates at most f faulty nodes with 3f+1 nodes
- MAC within inner ring, public-key outside
- Proactive threshold signatures

• How to durably store the order of updates?
- Antiquity: Log-based method (Eurosys ’07)

Archival Storage

• Erasure code
- Divide a block into m fragments
- Encode into n (n > m) fragments
- Recover from any m fragment
- Fragments are distributed uniformly and
deterministically
(n = 32, m = 16 in Pond)

• Distributes data across machines

• Efficiency: Erasure code vs. Replication

Secondary Replica (Caching)

• Reconstruction from fragments is
expensive

• An alternative: whole-block caching

• Greedy local caching: LRU in Pond

• Contact the primary for the latest version

Handling Updates

• Sends update to

• Primary tier

• Random replicas

Handling Updates

• Primary:

• Byzantine
agreement

• Secondary:

• Epidemically
propagation
(Gossiping)

Handling Updates

• Multicast from
the primary

Implementation

• Based on SEDA

• Implemented in Java

• Event driven, each subsystem as a stage

Implementation

“The current code base of Pond contains approximately 50,000
semicolons and is the work of five core graduate

student developers and as many undergraduate interns.”

Performance
Archival Storage

Performance
Latency Breakdown

Performance
Andrew Benchmark

• Five phases:

• Create target directory (Write)

• Copy files (Write)

• Examine file status (Read)

• Examine file data (Read)

• Compile & link the files (Read+Write)

Performance
Andrew Benchmark

Times are in seconds

Discussion

• OceanStore: a great vision

• Pond: a working subset of the vision

• Cool functionalities, but some are
expensive

• Performance upon failures?

• Questions?

