Making peer-to-peer systems
scalable

Presented by Elisavet Kozyri

What is a peer-to-peer system?

* A distributed application architecture that
partitions tasks or work loads between

peers

* Main actions:
* Find the owner of the file (indexing)
* Get the file from the owner

Popular P2P Systems

indexing

get file

Napster (1999 —2001)

&<

Gnutella (2000 — now)

<
&I

=l

What was it missing?

Scalable indexing mechanism

Goals

 Each node (peer) should be responsible for
certain files

e System remain robust during and after the
arrival and departure of nodes

Observation

* At the new system:
— Given an identifier of data it should find the owner.
— If a node joins or leaves it should rearrange the data.
* Is it similar to hash table?

— node & bucket
— identifier < key
— data & value

* Distributed hash table

Distributed Hash Table

* Abstraction:
— Simple interface
— Similar to hash table
— Pairs (key, value) are spread
across the nodes
* Implementation:
— Name space partitioning
— Each node responsible for a
fraction

— Each node has ID from the
same name space

— Nodes communicate over
an overlay network to route
lookup requests

Feb abcd Jun bcd
Apr bcde Jul cde
Nov ebcd

Chord: A DHT Implementation

Chord: Authors

lon Stoica

Associate Professor of CS at Berkeley

Robert Morris

Professor in the EECS department at MIT

David Karger

Professor in the EECS department at MIT

M. Frans Kaashoek

Professor in the EECS department at MIT

Hari Balakrishnan

Professor in the EECS department at MIT

Chord: Goals

Load balance

— Keys are spread evenly over the nodes
Decentralization

— No node is more important than any other
Scalability

— The cost of lookups grows as the log of the number of
nodes

Availability
— The node responsible for the key can always be found

Flexible naming
— No constraints on the structure of the keys

Chord: Protocol

* Hashing

— Determines the name space and the way it is
partitioned among nodes.

* Routing

— Determines the way lookup requests will be
routed among nodes to reach their destination.

* Joining

— Determines the way the system adopts itself at
the arrival of a node

Chord: Hashing

Consistent hash function
Each node and key has an
m-bit identifier
|dentifiers ordered in an
identifier circle

Key k belongs to the node
which identifier is the first
clockwise from k

Chord: Inefficient Routing

N1

lookup(K54)

/,

N8

K54

N51
N14

N48

N21

N32

Complexity: O(N)

Chord: Efficient Routing

N32

Complexity: O(logN)

Finger table

NS + 1

N14

N8 + 2

N14

N8 +4

N14

N8 + 8

N21

NS +16

N32

N8 +32

N42

Chord: Routing

NS + 1 N14
NS + 2 N14
N1
NS + 4 N14
lookup(54)
NS + 8 N21 Ng
K54
N8 +16 N32
NS +32 N42 N51 »
N48
N42+1 | N48
N42+2 | N48 \o1
N42 +4 | N48
N42 +8 | N51
N42 +16 N1 e
N42 +32 | N14

Chord: Node joins

e Stabilization

* Ensure node’s successor pointer is up to date

* Ex: N26.join(N42) -> N26.stabilize -> N26.notify(N32) ->
N21.stabilize -> N26.notify(N26)

K30

Number of keys per node

Failed Lookups (Fraction of Total)

500

400

350

300

250

200

150

100

50

0.08

0.07

0.08

0.05

0.0«

0.03

0.02

0.01

Chord: Evaluation

Load Balance

T
1st and 99th percentil

T
es +—i

40 60 80
Total number of keys (x 10,000)

Lookups During Stabilization

25% confidence interval —e—

004 0.06
Node FaillJoin Rate (Per Second)

0.08

0.1

Path length

Lookup Latency (ms)

Path Length

1st and 99th percentiles +—

700

600

400

200

100 1000
Number of nodes

10000

100000

Experimental Results

T5th, 50th, and 25th percentiles —e—1

160 180

20C

Chord: Discussion

Basic principle of routing
algorithm: Longest Shooting

Network locality?

Stabilization: “we separate
our correctness and
performance goals”

Lookups eventually succeed
Is Chord globally consistent ?
Anonymity?

General comments

Other DHT Implementations

Pastry
CAN
Tapestry
PRR
Viceroy
Kademlia

Pastry: Hashing

Circular namespace

Each node is randomly assigned a 128-bit
identifier (nodelD)

Each object is assigned an identifier at least
128 bits long (objID)

An object belongs to a node if nodelD is
numerically closest to the 128 most significant
bits of the objID

An object is stored on k nodes

Pastry: Hashing

Pastry: Routing

e nodelD

Level O Level 1 Level 2 Level 3

A message whose destID matches the local node’s nodelD up to level | is
forwarded to a node whose nodelD matches the destID up to least |+1.

* Routing table

For each level |, the routing table contains the IP address of 2°1 nodes that

have the same nodelD prefix as the local node up to level I-1, but differ at level
.

From all possible nodes, the closest are selected.

CAN

Content-Addressable Network

CAN: Hashing

d-torus

Each node owns a zone within the overall
space

A key is mapped onto a point in the space

If the point P belongs to the zone of node n,

then the corresponding (key, value) is stored
at n.

CAN: Routing

* Routing table: IP
address and virtual
coordinate zone of
each immediate
neighbors

A node forwards the
message to the
neighbor with
coordinates closest to
destination

@y \

\ ample routing
path from node |

o posst (2.y)

I's coordinate neighbor set = (2.3.4.5)
7's coordinate neighbor set = [)

Comparison of DHT Geometries

“The Impact of DHT Routing Geometry of
Resilience and Proximity”

K. Gummadi: Head of Networked Systems Research Group at Max Planck
Institute for Software Systems

R. Gummadi: assistant Professor, ECE, UMass Amherst

S. Gribble: associate Professor, CSE, University of Washington
S. Ratnasa MY . Researcher at Intel Research Berkeley

S. Shenker: Professor, EECS, UC Berkeley

|. Stoica: associate Professor, CS, US Berkeley

Comparison of DHT Geometries

e Resilience

— The ability of the DHT implementation to route during
and after arrivals/departures of nodes.

* Proximity

— The ability of the DHT implementation to adapt to the
underlying Internet topology.

* Flexibility
— Neighbor Selection
— Route Selection

Tree

000 001 010 011 100 101 110 111

* PRR, Tapestry
* Generous flexibility in choosing neighbors
* No flexibility in route selection

Hypercube

1104 olll

100@ ®101

 CAN
* Flexibility in route selection
* No flexibility in choosing neighbors

Ring

000
111
Chord o
Changes
— it neighbor of a belongs to 110 010
[(a +2'),(a+ 2]
— multiple paths 101 011
100

Flexibility in route
selection

Flexibility in choosing
neighbors

Hybrid

* Pastry (ring + tree)
* Flexibility in route selection
* Flexibility in choosing neighbors

Failed paths (%)

Static Resilience

Static resilience < Routing flexibility

100 T T T g@ﬁa /.gm——._!‘_;, ‘3\.9, IXOR T . T T T T T
R A X £ 80 Ring ---X--- i

8 S 43 Tree --%--

X / ? 6o L Hypercube -

gzl g Hybrid --m--
60 v 1 £
* T
40 "/ XOR —— 4 9
) Ring ---x--- x
e Tree ---%--- £
20 X Butterfly & 7 @
- Hypercube --m ®
0k 1 Hybnd -0 E

0 10 20 30 40 50 60 70 80 90
Failed nodes (%) Failed nodes (%)

Proximity

Proximity Neighbor Selection (PNS)
Proximity Route Selection (PRS)

What is the best?

I OO I .__--—--—""‘""J_'—_- T —— S B :.:...._:T-.._.___
90 -
80 -
70 / —
60 /
(I8 !
o 5 F ¢
(&)
40 |
0 /f Plain Ring
20 |-/ . PNS Ring
10 1 PRS Ring |
0 i L | IPNS+PRS Rling -
0 400 800 1200 1600 2000

Latency

Discussion

Are ring geometries the best?

What is the importance of sequential
neighbors?

How does neighbors flexibility influence
resilience/proximity?

Chord, CAN, Pastry: Are they used today?

Which is the best?
General comments

References

Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systemes,
Antony Rowston, Peter Druschel

A Scalable Content-Addressable Network, Sylvia
Ratnasamy, Paul Francis, Mark Handley, Richard
karp, Scott Shenker

Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications, lon Stoica, Robert
Morris, David Liben-Nowell, David Karger, M.
Frans Kaashoek, Frank Dabek, Hari Balakrishnan

Geometry shapes from Krishna’s SIGCOMM talk

Thank you!

