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What is a peer-to-peer system?

* A distributed application architecture that
partitions tasks or work loads between

peers

* Main actions:
* Find the owner of the file (indexing)
* Get the file from the owner
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What was it missing?

Scalable indexing mechanism



Goals

 Each node (peer) should be responsible for
certain files

e System remain robust during and after the
arrival and departure of nodes



Observation

* At the new system:
— Given an identifier of data it should find the owner.
— If a node joins or leaves it should rearrange the data.
* Is it similar to hash table?

— node & bucket
— identifier < key
— data & value

* Distributed hash table



Distributed Hash Table

* Abstraction:
— Simple interface
— Similar to hash table
— Pairs (key, value) are spread
across the nodes
* Implementation:
— Name space partitioning
— Each node responsible for a
fraction

— Each node has ID from the
same name space

— Nodes communicate over
an overlay network to route
lookup requests

Feb abcd Jun bcd
Apr bcde Jul cde
Nov ebcd




Chord: A DHT Implementation
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Chord: Goals

Load balance

— Keys are spread evenly over the nodes
Decentralization

— No node is more important than any other
Scalability

— The cost of lookups grows as the log of the number of
nodes

Availability
— The node responsible for the key can always be found

Flexible naming
— No constraints on the structure of the keys



Chord: Protocol

* Hashing

— Determines the name space and the way it is
partitioned among nodes.

* Routing

— Determines the way lookup requests will be
routed among nodes to reach their destination.

* Joining

— Determines the way the system adopts itself at
the arrival of a node



Chord: Hashing

Consistent hash function
Each node and key has an
m-bit identifier
|dentifiers ordered in an
identifier circle

Key k belongs to the node
which identifier is the first
clockwise from k




Chord: Inefficient Routing
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Chord: Efficient Routing
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Chord: Routing
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Chord: Node joins

e Stabilization

* Ensure node’s successor pointer is up to date

* Ex: N26.join(N42) -> N26.stabilize -> N26.notify(N32) ->
N21.stabilize -> N26.notify(N26)

K30



Number of keys per node
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Chord: Evaluation
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Chord: Discussion

Basic principle of routing
algorithm: Longest Shooting

Network locality?

Stabilization: “we separate
our correctness and
performance goals”

Lookups eventually succeed
Is Chord globally consistent ?
Anonymity?

General comments




Other DHT Implementations

Pastry
CAN
Tapestry
PRR
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Pastry: Hashing

Circular namespace

Each node is randomly assigned a 128-bit
identifier (nodelD)

Each object is assigned an identifier at least
128 bits long (objID)

An object belongs to a node if nodelD is
numerically closest to the 128 most significant
bits of the objID

An object is stored on k nodes



Pastry: Hashing




Pastry: Routing

e nodelD

Level O Level 1 Level 2 Level 3

A message whose destID matches the local node’s nodelD up to level | is
forwarded to a node whose nodelD matches the destID up to least |+1.

* Routing table

For each level |, the routing table contains the IP address of 2°1 nodes that

have the same nodelD prefix as the local node up to level I-1, but differ at level
.

From all possible nodes, the closest are selected.



CAN

Content-Addressable Network



CAN: Hashing

d-torus

Each node owns a zone within the overall
space

A key is mapped onto a point in the space

If the point P belongs to the zone of node n,

then the corresponding (key, value) is stored
at n.



CAN: Routing

* Routing table: IP
address and virtual
coordinate zone of
each immediate
neighbors

A node forwards the
message to the
neighbor with
coordinates closest to
destination
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Comparison of DHT Geometries
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Comparison of DHT Geometries

e Resilience

— The ability of the DHT implementation to route during
and after arrivals/departures of nodes.

* Proximity

— The ability of the DHT implementation to adapt to the
underlying Internet topology.

* Flexibility
— Neighbor Selection
— Route Selection



Tree
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* PRR, Tapestry
* Generous flexibility in choosing neighbors
* No flexibility in route selection



Hypercube
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 CAN
* Flexibility in route selection
* No flexibility in choosing neighbors



Ring
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Hybrid

* Pastry (ring + tree)
* Flexibility in route selection
* Flexibility in choosing neighbors



Failed paths (%)
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Proximity

Proximity Neighbor Selection (PNS)
Proximity Route Selection (PRS)

What is the best?
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Discussion

Are ring geometries the best?

What is the importance of sequential
neighbors?

How does neighbors flexibility influence
resilience/proximity?

Chord, CAN, Pastry: Are they used today?

Which is the best?
General comments
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Thank you!



