
Networking from an OS Perspective

Networking from an OS Perspective
CS6410 Lecture 12

Robert Escriva

Cornell CS 6410, October 7, 2010

Networking from an OS Perspective

1 Congestion Avoidance and Control

2 TCP Congestion Control with a Misbehaving Receiver

Networking from an OS Perspective

Congestion Avoidance and Control

Van Jacobson

Known for his work on the TCP/IP stack (this paper
in-particular).
traceroute, pathchar, tcpdump.
Currently at PARC. ∗

∗http://www.parc.com/about/people/88/van-jacobson.html

http://www.parc.com/about/people/88/van-jacobson.html

Networking from an OS Perspective

Congestion Avoidance and Control

Two papers in one?

This paper has a strange feel as if the figures (and their
respective captions) are disconnected from the main
body, which cites other papers to support the algorithms.
(Also, half the paper is appendices)

Is this a good or bad thing?

Networking from an OS Perspective

Congestion Avoidance and Control

Two Key Algorithms

slow-start This ensures that any individual node will not
saturate the network with a flood of packets
on a new connection.

congestion avoidance This takes over when a connection
is established to try continuously squeezing
more out of the network.

Networking from an OS Perspective

Congestion Avoidance and Control

Self-Clocking Connections

TODO: Insert figure 1.
Packet spacing slows to match the smallest pipe on the
path.

Networking from an OS Perspective

Congestion Avoidance and Control

The slow start algorithm

Straight from the paper:
Add a congestion window, cwnd, to the
per-connection state.
When starting or restarting after a loss, set cwnd to
one packet.
On each ack for new data, increase cwnd by one
packet.
When sending, send the minimum of the receiver’s
advertised window and cwnd. [?]

Networking from an OS Perspective

Congestion Avoidance and Control

Getting to Equillibrium

Let R be the round-trip-time (RTT)
Let W be the window size (measured in packets)
Rlog2W time to open the the window.

Networking from an OS Perspective

Congestion Avoidance and Control

Behavior Without Slow-Start

TODO: Insert Figure 3

Networking from an OS Perspective

Congestion Avoidance and Control

Behavior With Slow-Start

TODO: Insert Figure 4

Networking from an OS Perspective

Congestion Avoidance and Control

Exponential Backoff

Exponential backoff is the only scheme that really works.

Networking from an OS Perspective

Congestion Avoidance and Control

Retransmit Timers (According to RFC793)

R = αR + (1− α)M.
Retransmit timeout interval: rto = βR.
Suggested β = 2.

Adapts to loads of at most 30%.
High loads cause retransmission of delayed packets.

Networking from an OS Perspective

Congestion Avoidance and Control

RFC793 Retransmit Timers

TODO: Insert Figure 5

Networking from an OS Perspective

Congestion Avoidance and Control

Improving rtt mean and variation

Err = M − A

A← A + gErr

D ← D + g(|Err | − D)

A is average of RTT.
D is mean deviation of RTT.
g is gain.
Er is random error.
Ee is estimation error.

Networking from an OS Perspective

Congestion Avoidance and Control

Code

2nA← 2nA + Err

g =
1
8

M -= (SA >> 3);
SA += M;
if (M < 0)

M = -M;
M -= (SD >> 3);
SD += M;
rto = ((SA >> 2) + SD) >> 1;

Networking from an OS Perspective

Congestion Avoidance and Control

Mean+Variance Retransmit Timers

TODO: Insert Figure 6

Networking from an OS Perspective

Congestion Avoidance and Control

Congestion Avoidance Algorithm

Congestion⇒ packet loss (typically).
Packet lost⇒ timeout (typically).
Implies that timeout can be used to measure
congestion.

Networking from an OS Perspective

Congestion Avoidance and Control

Adapting to congestion

Wi = dWi−1 (d <
1)

Exponential
decrease for
persisted
congestion.

Wi = Wi−1+u (u �
Wmax)

Additive increase
for absence of
congestion.

Networking from an OS Perspective

Congestion Avoidance and Control

The slow start algorithm

Straight from the paper:
On any timeout, set cwnd to half the current window
size (multiplicative decrease).
On each ACK for new data, increase cwnd by 1/cwnd
(additive increase).
When sending, send the minimum of the receiver’s
advertised window and cwnd. [?]

Networking from an OS Perspective

Congestion Avoidance and Control

Experiments

TODO: Insert Figure 7

Networking from an OS Perspective

Congestion Avoidance and Control

No Congestion Avoidance

TODO: Insert Figure 8

Networking from an OS Perspective

Congestion Avoidance and Control

Congestion Avoidance

TODO: Insert Figure 9

Networking from an OS Perspective

Congestion Avoidance and Control

Overall Improvement

TODO: Insert Figure 10/11

Networking from an OS Perspective

Congestion Avoidance and Control

Proposed Future Work

Look to the gateways to control congestion too.
Look at second-order feedback for the increments
used.

Networking from an OS Perspective

Congestion Avoidance and Control

Takeaway points

Simple observations can make behavior more
predictable.

Reasoning about packet loss and using it as a way to
measure congestion.

Feedback-based algorithms are generally good.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Authors

Stefan Savage - Professor at UCSD.
Neal Cardwell - Seems to have dropped from radar
(or he’s been a graduate student researcher for 10+
years).
David Wetherall - Associate Professor at Washington.
Tom Anderson - Robert E. Dinning Professor at
Washington.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

The Big Picture

TCP’s congestion control assumes everybody “does the
right thing.”

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

ACK Division

TODO: Figure 1.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

DupACK Spoofing

TODO: Figure 2

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Optimistic ACKing

TODO: Figure 3

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Optimistic ACKing

This attack doesn’t preserve reliability, and is the most
clever of the three.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

TCP Daytona

Built on the TCP implementation of Linux 2.2.10.
Intended to abuse other systems using the three
attacks described.

The best line in the paper

Needless to say, our implementation is intentionally not
“stable”, and would likely lead to congestion collapse if it
were widely deployed.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Applicability

TODO: Table 1
Many vendors are vulnerable. A bug within NT saves it
from DupACK Spoofing (are there exploitable side-effects
of this bug?).

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Solutions

ACK Division
Have the congestion-control mechanism operate solely on
segment/byte granularity.

DupACK Spoofing
Add a nonce to the sent segments and ACKs.

Optimistic ACKing.
Sum the nonce numbers. Send sum on in-sequence data;
send the nonce itself for out-of-sequence data.
Randomly change segment boundaries.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Cumulative Nonce

TODO: Figure 7.

Networking from an OS Perspective

TCP Congestion Control with a Misbehaving Receiver

Key Points

Cooperative protocols do not always stand up when
clients misbehave.
When everyone else is playing nice, it’s easy to take
advantage of the situation.
Reinforces the point of the previous paper (more work
should be done at the gateways).

	Congestion Avoidance and Control
	TCP Congestion Control with a Misbehaving Receiver

