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Van Jacobson

Known for his work on the TCP/IP stack (this paper
in-particular).
traceroute, pathchar, tcpdump.
Currently at PARC. ∗

∗http://www.parc.com/about/people/88/van-jacobson.html
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Two papers in one?

This paper has a strange feel as if the figures (and their
respective captions) are disconnected from the main
body, which cites other papers to support the algorithms.
(Also, half the paper is appendices)

Is this a good or bad thing?
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Two Key Algorithms

slow-start This ensures that any individual node will not
saturate the network with a flood of packets
on a new connection.

congestion avoidance This takes over when a connection
is established to try continuously squeezing
more out of the network.
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Self-Clocking Connections

TODO: Insert figure 1.
Packet spacing slows to match the smallest pipe on the
path.
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The slow start algorithm

Straight from the paper:
Add a congestion window, cwnd, to the
per-connection state.
When starting or restarting after a loss, set cwnd to
one packet.
On each ack for new data, increase cwnd by one
packet.
When sending, send the minimum of the receiver’s
advertised window and cwnd. [?]
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Getting to Equillibrium

Let R be the round-trip-time (RTT)
Let W be the window size (measured in packets)
Rlog2W time to open the the window.
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Behavior Without Slow-Start

TODO: Insert Figure 3
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Behavior With Slow-Start

TODO: Insert Figure 4
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Exponential Backoff

Exponential backoff is the only scheme that really works.
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Retransmit Timers (According to RFC793)

R = αR + (1− α)M.
Retransmit timeout interval: rto = βR.
Suggested β = 2.

Adapts to loads of at most 30%.
High loads cause retransmission of delayed packets.
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RFC793 Retransmit Timers

TODO: Insert Figure 5
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Improving rtt mean and variation

Err = M − A

A← A + gErr

D ← D + g(|Err | − D)

A is average of RTT.
D is mean deviation of RTT.
g is gain.
Er is random error.
Ee is estimation error.
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Code

2nA← 2nA + Err

g =
1
8

M -= (SA >> 3);
SA += M;
if (M < 0)

M = -M;
M -= (SD >> 3);
SD += M;
rto = ((SA >> 2) + SD) >> 1;
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Mean+Variance Retransmit Timers

TODO: Insert Figure 6
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Congestion Avoidance Algorithm

Congestion⇒ packet loss (typically).
Packet lost⇒ timeout (typically).
Implies that timeout can be used to measure
congestion.
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Adapting to congestion

Wi = dWi−1 (d <
1)

Exponential
decrease for
persisted
congestion.

Wi = Wi−1+u (u �
Wmax)

Additive increase
for absence of
congestion.
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The slow start algorithm

Straight from the paper:
On any timeout, set cwnd to half the current window
size (multiplicative decrease).
On each ACK for new data, increase cwnd by 1/cwnd
(additive increase).
When sending, send the minimum of the receiver’s
advertised window and cwnd. [?]
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Experiments

TODO: Insert Figure 7
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No Congestion Avoidance

TODO: Insert Figure 8
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Congestion Avoidance

TODO: Insert Figure 9
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Overall Improvement

TODO: Insert Figure 10/11
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Proposed Future Work

Look to the gateways to control congestion too.
Look at second-order feedback for the increments
used.
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Takeaway points

Simple observations can make behavior more
predictable.

Reasoning about packet loss and using it as a way to
measure congestion.

Feedback-based algorithms are generally good.
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Authors

Stefan Savage - Professor at UCSD.
Neal Cardwell - Seems to have dropped from radar
(or he’s been a graduate student researcher for 10+
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David Wetherall - Associate Professor at Washington.
Tom Anderson - Robert E. Dinning Professor at
Washington.
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The Big Picture

TCP’s congestion control assumes everybody “does the
right thing.”
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ACK Division

TODO: Figure 1.
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DupACK Spoofing

TODO: Figure 2
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Optimistic ACKing

TODO: Figure 3
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Optimistic ACKing

This attack doesn’t preserve reliability, and is the most
clever of the three.
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TCP Daytona

Built on the TCP implementation of Linux 2.2.10.
Intended to abuse other systems using the three
attacks described.

The best line in the paper

Needless to say, our implementation is intentionally not
“stable”, and would likely lead to congestion collapse if it
were widely deployed.
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Applicability

TODO: Table 1
Many vendors are vulnerable. A bug within NT saves it
from DupACK Spoofing (are there exploitable side-effects
of this bug?).
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Solutions

ACK Division
Have the congestion-control mechanism operate solely on
segment/byte granularity.

DupACK Spoofing
Add a nonce to the sent segments and ACKs.

Optimistic ACKing.
Sum the nonce numbers. Send sum on in-sequence data;
send the nonce itself for out-of-sequence data.
Randomly change segment boundaries.
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Cumulative Nonce

TODO: Figure 7.
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Key Points

Cooperative protocols do not always stand up when
clients misbehave.
When everyone else is playing nice, it’s easy to take
advantage of the situation.
Reinforces the point of the previous paper (more work
should be done at the gateways).
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