Remote Procedure Calls

Why RPC?

Clean, familiar semantics
— Distributed Systems are hard to begin with!

Efficient (?)
Generality
— parallels single machine functional decomposition

Make the programmer’s life easy!

Implementing RPC

e Andrew Birrell

— Xerox PARC, then DEC SRC

— DEC SRC responsible for Firefly workstation
e used in Bershad paper

— now at Microsoft Research

* Bruce Nelson
— Xerox PARC, then Cisco
— CMU PhD —thesis the “foundation” of RPC
— ACM Software Systems award (for RPC)

RPC — Take Home Points

e Treat cross-machine calls like local calls
e Let’s make the programmer’s life easy

* New Failure conditions
— think Brewer’s Conjecture

Overview

RPC Structure

— Functions
— Stubs
— RPCRuntime

RPC Implementation
— Binding

— Transport Protocol
RPC Evaluation

Issues

Reexamine Local Procedure Calls

A calls B
A waits for B
B does the work, returns control to A

A resumes

Applied to RPC

A calls B on a different machine
A waits for B, other processes run
B does the work, sends a message to A

A resumes

Stubs

e Stubs provide:
— entry-point into remote functions
— functional prototypes

e Stubs automatically generated

RPCRuntime

e Handles:
— retransmissions

— acknowledgments
— packet routing
— encryption

Simple Call

Network

Callee machine

I RPCRuntime Server-stub Server

Call packet)l ,
receive

Resuit packet

K

Caller machine

User User-stub RPCRuntime

local ack —i transmit

call rgument N
wait

local npack \l/

return ult ﬁ receive

importer exporter

interface

Fig. 1.

npack all
rgument 1/
work
pack \l/
transmit It return
importer exporter
interface

The components of the system, and their interactions for a simple call.

Overview

RPC Structure
— Functions

— Stubs
— RPCRuntime

RPC Implementation
— Binding

— Transport Protocol
RPC Evaluation

Issues

Binding

e Uses types and instances:
— Type: mail server
— Instance: mail.website.com

e Uses “Grapevine” as a lookup server
— Similar to DNS

* Can bind by:
— network address
— instance name

— type name

RPC Transport Protocol -
Requirements

 RPC mainly short messages between machines
— Latency is important
— Small packets with low overhead is ideal

 RPC must always fail or execute exactly once

* Best case:
— Caller sends a call packet to server
— Server does the work
— sends back a result packet

RPC Transport Protocol —
Potential Issues

* If the server takes to long to respond:
— it could be packet loss!
— duplicate packets
— Call identifier silently drop duplicate packets
— But...both machines must maintain state info

 Multi-packet argument case:

— Clever acknowledgement system to reduce traffic
— But...bad at sending bulk data

Overview

RPC Structure
— Functions

— Stubs
— RPCRuntime

RPC Implementation
— Binding

— Transport Protocol
RPC Evaluation

Issues

Evaluation

Table I. Performance Results for Some Examples of Remote Calls

Procedure Minimum Median Transmission Local-only
no args/results 1059 1097 131 9
1 arg/result 1070 1105 142 10
2 args/results 1077 1127 152 11
4 args/results 1115 1171 174 12
10 args/results 1222 1278 239 17
1 word array 1069 1111 131 10
4 word array 1106 1153 174 13
10 word array 1214 1250 239 16
40 word array 1643 1695 566 51
100 word array 2915 2926 1219 98
resume except'n 2555 2637 284 134

unwind except'n 3374 3467 284 196

Possible Issues

Why do some people dislike RPC?
Machine/communication failure

Overhead from lack of shared address space
Data integrity/security

Grapevine server could fail

DNS-like attack on Grapevine

Strengths and Weaknesses

e |t's “humble”:

— “There are certain circumstances in which RPC seems to
be the wrong communication paradigm”

 Other works not referenced, just alluded to
 Benchmarks not meaningful

Where did RPC Go?

Hot topic in the 80’s / 90’s
All but disappeared?

Sockets, etc. caught up...

Moore’s law made it irrelevant
— (M. Satyanarayanan — Coda paper)

Lightweight Remote Procedure Call

Brian Bershad
— UW PhD, wrote SPIN, now a professor at UW

Thomas Anderson
— UW PhD, tons of papers, also professor at UW

Edward Lazowska
— UW Professor

Hank Levy
— UW Professor, part of the DEC VAX design team

LRPC — Take Home Points

RPC was pervasive

— Remote calls

— Local calls across “protection domains”
— Simple calls with few parameters

Local communication much more frequent
— Optimize it

Optimize the common case!
Treat the uncommon case differently

LPRC Motivation

* Local RPC had awful performance
— Programmers coded around it

 LRPCis much faster
— Programmers to design better code
* Monolithic kernels have no intra-OS processes
boundaries
— Not secure!
— Makes it hard to debug, modify, etc.

Overview

LRPC Structure

LRPC Implementation
— Domain Caching

LRPC Structure

* Almost identical to RPC except for the focus on:
— Keeping logically separate part separate

* RPC does this...by having them on different machines

— Keeping control transfer and stubs simple
— Sharing VM (parameters) between client and server
— Using concurrency

* Must keep overhead low in the common case!

LRPC Implementation

 Many “cute” hacks for speed:
— Clients pass data to servers through VM mapping
— Procedures in same interface can share “argument stacks”
— Keeps “execution stacks” available in server domain

— Uses “domain caching” on multiprocessor machines

Multiprocessor LRPC

* TLB misses (from context switching) are expensive,
so they use domain caching:
— Eg: Processor A is idling in kernel-space

— Processor B makes LRPC call from user-space to kernel-
space

— Instead of running in kernel-space on Processor B, the
function runs on Processor A

 This means no context switch!

Other Benefits of LRPC

e Less argument copying needed
* Private channel between domains

* In cases where parameters are immutable even less
copies can be achieved

Overview

LRPC Structure

LRPC Implementation
— Domain Caching

LRPC Evaluation
Wrap-up

Evaluation

Table IV. LRPC Performance of Four Tests (in microseconds)

Test Description LRPC/MP LRPC Taos
Null The Null cross-domain call 125 157 464
Add A procedure taking two 4-byte 130 164 480

arguments and returning one
4-byte argument

Bigin A procedure taking one 200-byte 173 192 539
argument
BigInOut A procedure taking and returning 219 227 636

one 200-byte argument

Evaluation

3 times faster than the built-in RPC
— Not an order of magnitude difference

Gets much closer to the theoretical minimal

Multiprocessor version close to throughput cap

Multiprocessor version is scalable

Strengths and Weaknesses

Simple, cute hacks, better than optimized version

Comes up with secondary ideas
— Domain caching

Didn’t try to port their code to other architectures
— “[it] should be a straightforward task”

Argument stacks in global shared virtual memory
— Doesn’t match design specifications
— Lowered security

Performance of Firefly RPC

e Basically response of the Firefly team to LRPC

e Cute hacks for the remote machine case
— LRPC covered the local machine case

RPC in the x-Kernel

* Cleveridea:
— RPC-like system, change protocols’ layers at runtime

— Change the underlying network layer (from IP to direct-to-
Ethernet) at runtime

Discussion

