VIRTUALIZATION

Xen and the Art of Virtualization

Are Virtual Machine Monitors
Microkernels Done Right?

Presented by Brett Fernandes

Problems with Other Architectures

* Microkernels

e Poor Performance
overhead from IPC

* Change the ABI

Must forfeit all available software for the system

* Monolithic kernel in disguise?
Failure conditions of external pagers

* Exokernels
* No application multiplexing

* No place for the untrustworthy!

Virtual Machines to the rescue?

Excellent Performance
— Achieved through Paravirtualization

Retain the same ABIs
— All required architectural features are virtualized

Internal Paging by each VM

Application multiplexing is everything
— Each guest OS can multiplex applications securely

The untrustworthy are welcome
— Strong resource isolation between VMs

VMs - The resurgence rather than the
emergence

e Anoldidea-IBM 370in 1972.

— A Virtual Machine Time-Sharing System (Meyer and Seawright)
described the CP-67/CMS — the first virtual machine.

* Newer ventures:

Vmware ESX Server (2001) - successor of Disco

The Denali project (2001) - coined the term paravirtualization
Sun’s VirtualBox (2008)

Microsoft released Hyper-V (2008)

Xen is the most widely used by far — available as open source but now
owned by Citrix Inc.

Lk ownNE

Xen and the Art of Virtualization

Paul Barham

Microsoft Research, UK

Nemesis OS (QoS for I/O and virtual memory)
Rolf Neugebauer

Intel Research, Cambridge, UK

Boris Dragovic
XenoServer Team (Cambridge 2002), LinSec — Linux Security System

Keir Fraser, Steven Hand, Tim Harris, Alex Ho, lan Pratt
Cambridge University, UK

Andrew Warfield
University of British Columbia

Introduction

* Challenges to build virtual machines

— Performance isolation

Scheduling priority

Memory demand
 Network traffic
e Disk accesses

— Support for various OS platforms

— Small performance overhead

Xen Principles

 Unmodified Application Binaries
— No change to applications required

* Full multi-application OS support
— Support for XenolLinux and ongoing work on Windows XP and BSD

e Paravirtualization
— High performance

* Resource Isolation
— Allows malicious users without harming other VMs

* Partial view of physical resources provided

Xen: Approach and Overview

* Multiplexes resources at the granularity of an entire OS
— As opposed to process-level multiplexing
— Price: higher overhead

 Target: 100 virtual OSs per machine

— Denali supported over a thousand

Xen: Approach and Overview

* Conventional approach - Full virtualization
— Virtual hardware is functionally identical to underlying machine

* Virtualizing the entire instruction set
— No view of physical resources

* Problematic for certain privileged instructions
— Failed silently rather than trapping

Shadow structures
— Vmware traps every update page table event

No real time available

Hosted OS not modified

Xen: Approach and Overview

 New approach - paravirtualization
— Virtual hardware is similar, not identical to the underlying hardware

Partial view of the underlying hardware
* No modification of applications

VMs handle paging

— No shadow tables required

Real, virtual and clock time provided

* Need modifications to the OS
— porting to Xen for every version of every OS

System Control Mechanism

e Separation of policy and mechanism

Domain0 hosts the application-level
management software

_ Creahon and deletlon - Sousft;;re Sol:ts;;re Solbfn:;re
of virtual network

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

interfaces and block

X o-Aw re Xeno-Aw are X Aw are
e Drivers e Drivers

e
Device D
d evices D°’":’;”'0 virtual virtual virtual virtual
inc?e':face x86 CPU phy mem network blockdev

System Control Mechanism

e Control Transfer: Hypercalls and Events

* Hypercall: synchronous calls from a domain to Xen
— Analogous to system calls

* Events: asynchronous notifications from Xen to domains
— Replace device interrupts

CPU Design

* X86 supports 4 levels of privileges
— 0 for OS, and 3 for applications
— Xen downgrades the privilege of OSes

— System-call and page-fault handlers registered to
Xen

— “fast handlers” for most exceptions, Xen isn’t
involved

CPU Implementation

* Borrowed virtual time scheduling

— Allows temporary violations of fair sharing to
favor recently-woken domains

— Goal: reduce wake-up latency

Time and Timers

* Xen provides each guest OS with
— Real time (since machine boot)
— Virtual time (time spent for execution)
— Wall-clock time
* Each guest OS can program a pair of alarm
timers
— Real time

— Virtual time

Memory Design

 The conventional easier approach:

— Software managed TLB
* Associate address space IDs with TLB tags
* Allow coexistence of OSes
e Avoid TLB flushing across OS boundaries

Memory Design

e X86 does not have software managed TLB
— Xen exists at the top 64MB of every address space

— Avoid TLB flushing when an guest OS enters/exits
Xen

— Each OS can only map to memory it owns
— Writes are validated by Xen

Physical Memory Implementation

Reserved at domain creation times
Memory statically partitioned among domains
XenolLinux’s balloon driver

Does not guarantee contiguous allocation of
memory

Virtual Address Translation

No shadow pages (VMWare)

Xen provides constrained but direct MMU
updates

All guest OSes have read-only accesses to
page tables

Updates are batched into a single hypercall

Device |I/O Design

e Xen exposes a set of simple device
abstractions

* Allows an efficient interface which provides
protection and isolation

* |/O data transfer between domains via Xen

Data Transfer:

» Zero-copy semantics

Request Consumer
Private pointer
in Xen

Response Producer
Shared pointer
updated by
Xen

/0 Rings

Request Producer

Shared pointer
/ updated by guest OS

Response Consumer
Private pointer
in guest OS

[Request queue - Descriptors queued by the VM but not yet accepted by Xen
I Outstanding descriptors - Descriptor slots awaiting a response from Xen
I Response queue - Descriptors returned by Xen in response to serviced requests

[|Unused descriptors

Disk Access Implementation

* Only DomainO has direct access to disks

 Other domains need to use virtual block
devices
— Use the I/O ring
— Reorder requests prior to enqueuing them on the
ring
— If permitted, Xen will also reorder requests to
improve performance

* Use DMA (zero copy)

Network

Virtual firewall-router attached to all domains
Round-robin packet scheduler

To send a packet, enqueue a buffer descriptor
into the transmit ring

Use scatter-gather DMA (no packet copying)

— A domain needs to exchange page frame to avoid
copying
— Page-aligned buffering

The Cost of Porting an OS to Xen

Architecture Independent (78 lines)
Virtual Block Device driver (1070 lines)
Virtual Network driver (484 lines)

Xen specific (1363 lines)

< 2% of code-base

Evaluation

Against other virtualization techniques
— Vmware, User Mode Linux(UML)

Single Native OS vs Virtual Machine
— Running multiple applications on a native OS vs a guest OS

Performance Isolation between Guest OSs

Overhead of running large number of OSs

Relative Performance

o
sl
7
N
57
N
37
27
i

Linux Xen VMWare UML

SPEC INT2000 score

CPU Intensive

Little I/0O and OS interaction

0.9

SN

0.8

0.7

0.6

0.5+

Linux Xen VMWare UML
SPEC WEB99
180Mb/s TCP traffic

Disk read-write on 2GB dataset

0.S Benchmarks

Context switching times — extra overhead due to hypercall
required to change the page table base.

2p 2p 2p 8p 8p 16p 16p
Configl OK 16K 64K 16K 64K 16K 64K
L-SMP| 1.69 1.88 2.03 2.36 26.8 4.79 38.4
L-UP | 0.77 091 1.06 1.03 243 3.61 37.6
Xen 1.97 222 2.67 3.07 28.7 7.08 394
VMW | 181 176 213 224 516 41.7 722
UML | 155 146 144 163 36.8 23.6 52.0

Table 4: Imbench: Context switching times in ps

Concurrent Virtual Machines

Multiple Apache
processes in Linux

VS.

One Apache process in
each guest OS

Aggregate number of conforming clients

1000

800

600

400

1001

-16,3% (non-SMP guest)

1 2 4 8 16
Simultaneous SPEC WEB99 Instances on Linux (L) and Xen(X)

Performance Isolation

4 Domains

2 running benchmarks

1 running dd

1 running a fork bomb in the background

2 antisocial domains contributed only 4%
performance degradation

Normalised Throughput

Scalability

]
20 ‘?T—"f ———1—-"1‘ ! £ e > |
A - X » ¥
18
16
14
1.2 Linux —+— —
XenoLinux (50ms time slice) —#—
10 XenoLinux (5ms time slicel ——
) 3 1 L L L 1 L L

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Concurrent Processes/Domains

Normalized aggregate performance of a subset of
SPEC CINT2000 running concurrently on 1-128 domains

Issues

Extra effort is required to port every version of every OS to
Xen
— Demonstrated by the ‘ongoing effort’ to port Windows XP and BSD

Running a full OS is more taxing in terms of resource
consumption

The requirement of every privileged instruction being
validated by Xen results in performance overhead

Difficult to implement on an architecture with only 2 privilege
levels

Discussion/Takeaways

 Main achievement — performance.
— Completely outperformed Vmware in almost all benchmarks

* |dentified potential problems and took steps to minimize
them
— Eg Fast exception handler for system calls

* OS level multiplexing

— Solved the problem of performance isolation that plagued traditional
OS techniques

* |Innovative approach to TLB
— Allocation of top 64MB to Xen avoids TLB flushes

Are Virtual Machine Monitor
Microkernels Done Right?

e Steven Hand, Keir Fraser, Evangelos Kotsovinos
Cambridge University, UK

 Andrew Warfield
University of British Columbia

 Dan Magenheimer
HP labs, Fort Collins
Wrote the first PA-RISC simulator
Developed Vblades, the first Itanium VMM

Sparking the Debate

Mendel Rosenblum’s claim
VMMs are microkernels done right
Common system goals

Microkernels — Academia vs VMMs - Industry

Microkernels — Noble Idealism

e Communication oriented
A smaller OS core is easier to maintain, validate and port

* Architecturally better than monolithic kernels

VMMs — Rough Pragmatism

Strong resource isolation
Main concern is reducing overhead due to extra layer
Support execution of out-of-the-box applications

Where do Exokernels stand?

Architectural Lessons

Liability inversion
External pagers in microkernels vs Parallax using VMs for storage

IPC Performance
Minimum communication between VMs
Decoupling of control and data path operations

OS as a Component
Microkernels forfeit the software available
VMMs appeal to developers because of a familiar environment

Discussion

* Very biased view of the debate
— Possibly due to several of the authors working on Xen

* Focused on microkernel flaws and how VMMs were the
answer

— (almost certainly) Knowingly chose to refer to certain aspects of
VMMs ambiguously

* Microkernels and VMMs appear to be more related rather
than significantly different.

