CS 6410
28sep2010
Multi-Processors

Vainstein K.

Multi-Processor: Definition, Kinds

* Defined: shared-memory machine, N CPUs, each
of which can access remote memory directly via
HW. Flynn's classification [1972]: MIMD (multiple

instruction streams, multiple data streams)
 UMA, bus (=@ Your laptop) or switched. aka SMP

* NUMA
— NC-NUMA: no local caches
— ccNUMA: with local caches, which are kept coherent

= What we'll be talking about today

Source: Tanenbaum, "Structured Computer Organization", ed 4

First VMMs: When and Why

3rd-generation OSes: multiprogramming, "grid
computing" (timesharing), spooling. 1965-80

notables: OS/360 family, MULTICS, CTSS

OSes divided into privileged software nucleus
(modern term: kernel), and everything else

nucleus's "ABI" + nonprivileged instructions =
extended machine, what the rest of the OS ran on

once extended machine "covered over" bare
metal, programs targeting bare metal couldn't
run

N o~ 1 11 11 7~ " v 71* . 1 n N 1 = "~ 1 n L™~ o~ . n N - —f =\

Disco: Running Commodity Operating Systems on
Scalable Multiprocessors, Bugnion et al. (1997)

 Edouard Bugnion: Stanford MS (PhD dropout),
VMware ‘98- 05, founder Nuova ' 05, bought
by Cisco ' 08, VP/CTO of BU

e Scott Devine: Cornell BS (go Big Red!),
Stanford MS (PhD dropout), still with VMware

e Mendel Rosenblum: Professor at Stanford
* VMware: $36.1B market cap, 146.2 P/E

. Source: LinkedIn, VMware website

Key Ideas/Takeaways

parallel HW here now, OSes not yet (why? hard)
VMs good solution whenever SW trails HW

Disco is a VM monitor: dynamically reallocate
resources (CPU cycles, memory) between VMs

key concern: data locality (remove NUMA-ness)
require minor/no modifications to guest OSes
prefer cross-hatching to shading

Design Structure

layer between OSes, and the multiple
processors of the multi-processor machine

global policy specifies how to allocate all
resources

virtualize: CPU, memory, |/O (upcoming slides)

benefit: can support specialized OSes (e.g.
with FS cache policy designed for RDBMSes)

CPU Virtualization

* direct execution, intercept: TLB updates, DMA
* Disco can move VCPUs around physical CPUs

 on VCPU switch, save state of switched-out

VCPU:

typedef struct {
Register t datal[];
Register t PC;
Register t ...

} VirtualCPU t;

Memory Virtualization

* terminology
— virtual: what apps think they have
— physical: what OS thinks it has
— machine: what is really there (on 1+ NUMA nodes)

* intercept virtual->physical map from OS, replace
with virtual->machine TLB entry

 flush TLB on VCPU switch, expensive; 2"¢-level
STLB (inside VM?) ameliorates cost

Memory Management

* replicate read-only pages (e.g. text)
* migrate pages to where they're accessed
more

— how decisions informed: hardware provides cache
miss counter

* VM-aware apps can share memory (e.g. FS
buffer cache)

|/O Virtualization

if page requested in machine memory, map
DMA block to the page

copy-on-write, writes private to VM
log modified sectors

iInter-VM communication via messages;
message pages mapped to sender+receiver

What is SimOS? (also used by Gamsa team)

simulator, models MIPS-family multiprocessors

simulates HW components: CPU, caches,
memory buses, HDs, ethernet, consoles, ...

dynamic control of speed-detail tradeoff
simulations fully deterministic
has access to symbol table in simulated machine

Tcl annotations control what is logged (cf.
DTrace)

source: "Using the SimOS machine simulator to study complex computer systems",
ACM Transactions on Modeling and Computer Simulation (TOMACS) Vol 7, Iss 1 (Jan
1997)

Performance

ran on: SimOS emulation of FLASH (ccNUMA)

trap emulation is expensive; most VM overhead
is here

virtualization overhead, slowdown < 16%

faster to run N VMs with IRIX in uniprocessor
mode, than IRIX on bare metal in N-processor
mode

memory locality (due to management) gives 33%
speedup, for representative workload

Where This Paper Excels

e does not assume prior knowledge of domain

e graphs help visualize software organization,
flow of control

e pragmatic outlook

VM vs Exokernel vs SPIN

* (obvious) VMs don't require OS rewrite, viable
 who controls the resources?
* where is the policy? (beside the mechanism...)

* how do we specialize an OS module? (e.g. FS
ouffer cache)

 how do we get fault-tolerance? process
isolation?

* isan STLB needed? if so, why?

Tornado: maximizing locality and concurrency in a
shared memory multiprocessor operating system,
Gamsa et al. (1999)

* Ben Gamsa: U Toronto PhD '99, programmer

* Orran Krieger: U Toronto PhD '94, IBM researcher
'96-'07, programmer at VMware

* Jonathan Appavoo: U Toronto PhD, IBM
researcher, Asst Professor at U Boston

e Michael Stumm: Professor at U Toronto

 Tornado: licensed to IBM in '98, open-sourced by
IBM, no activity after '02-'04

. Source: LinkedIn

Key Ideas/Takeaways

e every virtual, physical resource is an object
e key concerns: data locality + independence

* want to minimize false sharing in (large) cache
lines

Design Structure

localize (their term: "object-oriented") a
process's PCB to processor running said process

multiple implementations of OS objects (our
term: "stub vs full implementation")

desired future elaboration: swap
implementations at runtime

aim: minimize global state

Innovation: Clustered Objects

clustered OS object composed of 1+ component
objects ("representatives", or "reps")

component objects reachable via single object
reference, which redirects to the right rep

reps kept consistent via shared memory, or
PPCs

complexity (actual location, consistency
protocol) hidden within clustered object

each rep can be locked independently

rroated An 15t acrrace with nhiecrt'ce mice handlar

Innovation: Protected Procedure Call

* in their words: "call from a client object to a
server object acts like a clustered object call
[undefined] that crosses from the protection
domain [undefined] of the client to that of the
server, and then back on completion”

®* CrosSs-process, Cross-processor

* implementation claimed to improve locality
and concurrency

Innovation: Semi-Automatic GC

* unknown what makes it "semi-automatic"
* temporary references are thread-private

* persistent references are shared
1.remove persistent references

2.remove temporary references (wait for sys
calls which could have accessed this
reference, to complete)

3.remove clustered object itself

Performance (top of pages[n-3])

ran on: [cc|[NUMAchine, and SimOS emulating...??

thread creation/destruction, page fault handling,
fstat: no slowdown with either 1..N threadsin 1
process ("mt"), or 1..N processes of 1 thread each

(Ilmpll)
commercial OSes of the day degrade

logarithmically, in the "mt" case; also no
slowdown in the "mp" case

Reasons for Skepticism

 a full-featured OS would have many more
objects (in kind, and number). Would clustered
objects scale? (Concern about overhead)

* if commercial OSes are just as good with N
processes, why not simply write multi-process
apps for those?

* no macrobenchmarks (entire apps); unsure that
they really put Tornado "through its paces”

Where This Paper Falls Short

* nonstandard terminology (e.g. "hardware
address translation [HAT]" == TLB)

* not copy-edited completely (e.g. "Platforms
on which micro-benchmarks where run",
"system insures that all temporary references
have been eliminated")

* incomplete definitions (e.g. PPC, above);
perhaps complete definitions given in group's
prior publications?

Comparison of the Papers

Bugnion (Disco) Gamsa (Tornado)

style problems none not enough high-
level

clarity of exposition good below average
comprehensive yes not really
performance
analysis
innovation moderate pretty high
prototype: interoperability with algorithm, design
engineering mature products

challenge

Towards Transparent and Efficient Software
Distributed Shared Memory, Scales and
Gharachorloo. 16th SOSP, 1997.

software DSM (distributed shared memory)
— rewrite LOADs/STOREs to access remote nodes
— |let uniprocessor-targeted binary run on a cluster

problem: support complete ISA, incl. atomic ops;
emulate wonted memory consistency model

problem: extend OS services across many nodes

cache coherence, via directory-based invalidation
protocol (what ccNUMASs do in HW)

code modification, doable at link-/load-time

Performance Isolation: Sharing and Isolation in
Shared-Memory Multiprocessors, Verghese et
al. 8th ASPLOS, Oct 1998.

SMP servers have become the "new mainframes”
don't let users hog: CPU, memory, I/O bandwidth
software performance unit (SPU): mini-machine
guarantee minimum level of resources

policy specifies whether to "loan" idle cycles

1+ CPUs given to an SPU; fractions via timeslicing
implemented by: augmenting [hacking up] kernel

Discussion

