
Virtual Memory:
Mach and Asbestos

Presented by Hakim Weatherspoon

Machine-Independent Virtual Memory
Management for Paged Uniprocessor and

Multiprocessor Architectures
Richard Rashid, Avadis Tevanian, Michael Young, David
Golub, Robert Baron, David Black, William Bolosky, and

Jonathan Chew

•  Richard Rashid
–  Lead developer of Mach
–  Microsoft Research

•  William Bolosky
–  Microsoft Research

Mach

•  Problem
–  OS portability suffers due to diff. memory structures

•  Solution
–  Portable, multiprocessor OS – Mach
–  Few assumptions about memory hardware

•  Just recover from page faults

Takeaway

•  Hardware-independent virtual memory (VM) is not
only possible, but can be elegant
–  Hardware dependent structures contained to pmap
–  VM functionality can be delegated to user process
–  Mach works with uniprocessors, multiprocessors,

 One- and two- level page tables, and inverted page tables

•  Lessons/Flaws
–  Macrobenchmark performance missing
–  Performance revisited over next 10+ years

Mach Virtual Memory

•  Supports:
–  Large, sparse virtual address spaces
–  Copy-on-write virtual copy operations
–  Copy-on-write and read-write memory sharing
–  Memory mapped files
–  User-provided backing store objects and pagers

Mach Abstractions
•  Task

–  Basic unit of resource allocation
–  Virtual address space, communication capabilities

•  Thread
–  Basic unit of computation

•  Port
–  Communication channel for IPC

•  Message
–  May contain port capabilities, pointers

•  Memory Object

Virtual Memory Operations

•  A task can:
–  Allocate a region of VM on a page boundary
–  Deallocate a region of VM
–  Set the protection status of a region
–  Specify the inhertance of a region
–  Create and manage a memory object

Implementation

•  4 basic memory management data structures:
–  Resident page table
–  Address map
–  Memory object
–  Pmap

•  Machine dependent vs independent

Resident Memory

•  Physical memory – cache for virtual memory objects
•  Physical page entries linked into:

–  Memory object list
–  Memory allocation queues
–  object/offset hash bucket

Address Map

•  Doubly-linked list of address map entries
•  Map range of virtual addresses to area in virtual

object
–  Contiguous

•  Efficient for most frequent operations:
–  Page fault lookups
–  Copy/protection operations on address ranges
–  Allocation/deallocation of address ranges

Memory Objects

•  Repository for data, indexed by byte
–  Resembles a UNIX file

•  Reference counters allow garbage collection
•  Pager – memory object managing task

–  Handles page faults, page-out requests outside of
kernel

Sharing Memory

•  Copy-on-write
–  Shadow objects
–  Remembers modified pages

•  Read/write sharing
–  Memory object not appropriate for this
–  Must use sharing maps

Object Tree

•  Must prevent large chains of shadow objects
–  Utilize GC for shadow objects

•  Unnecessary chains occurs during heavy paging
–  Cannot be detected easily

•  Complex locking rules

pmap

•  Management of physical address maps
–  Only machine-dependent module
–  Implement page-level operations
–  Ensure hardware map is operational
–  Need not keep track of all currently valid mappings

•  Machine-independent parts are the driving force
of Mach VM operations

Porting Mach Virtual Memory

•  Code for VM originally ran on VAX machines
–  IBM RT PC
–  Approx. 3 weeks for pmap module

•  Sequent Balance
–  5 weeks – bootable system

•  Sun 3, Encore MultiMAX

Multiprocessor Issues

•  TLB Consistency
–  Force interrupts to all CPU’s
–  Wait until timer interrupt
–  Temporarily allow inconsistency

Performance

Perspective

•  Achieved Goals
–  Sophisticated, hardware-independent VM system

possible
–  Can achieve good (microbenchmark) performance

•  Lessons/Flaws
–  Macrobenchmark performance missing
–  Performance revisited over next 10+ years

Labels and Event Processes in the Asbestos
Operating SystemPetros

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey,

David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, Robert Morris
•  Frans Kaashoek and Robert Morris

–  MIT Faculty. Creators of Chord.
–  Academic father and grandfather to other authors and many more

•  Maxwell Krohn
–  Creator of OK Cupid dating Service (ugrad @ Harvard)
–  Creator SFSLite and OK Web Server

•  David Mazières
–  Stanford Faculty
–  Creator of SFS and libasync

•  Eddie Kohler
–  UCLA Faculty
–  Creator of Click Modular Router

•  Rest were students at MIT or UCLA

Asbestos Outline

•  Why is it needed?
•  Other models

–  Virtual machines
•  Asbestos OS

–  Labels
–  Event processes

•  Asbestos OKWS
•  Performance

The Problem

•  Web servers have exploitable software flaws
–  SQL injection, buffer overrun

•  Private information leaked
–  Credit card #'s, SS #’s
–  All data potentially exposed due to single flaw

•  Lack of isolation of user data
•  Unconstrained information flow

The Problem

•  If Bob compromises
the system, he can
access Alice's data

/submit_order.cgi

Alice
123 Main St.
4275-8204-4009-7915

Kernel

Bob
456 Elm St.
5829-7640-4607-1273

The Problem

•  If Bob compromises
the system, he can
access Alice's data

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

The Problem

•  If Bob compromises
the system, he can
access Alice's data

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Alice
123 Main St.
4275-8204-4009-7915

The Problem

•  If Bob compromises
the system, he can
access Alice's data

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Alice
123 Main St.
4275-8204-4009-7915

The Goal: User Isolation
•  Bob should not be able to access Alice's data

without Alice's permission

–  Alice and Bob’s data is isolated

•  Complications

–  Even if there are bugs in the applications
–  Alice's data may travel through several processes

•  To isolate, must prevent inappropriate data flow

•  Application designer defines inappropriate

Virtual Machine Isolation

/submit_order.cgi

Kernel

/submit_order.cgi

Kernel

VMM

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Virtual Machine Tradeoffs
+  Strict partitioning of off-the-shelf software

+  But…

–  Coarse-grained sharing
–  Resource challenges

•  Isolation should be an OS feature

Desired Behavior

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Desired Behavior

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Alice
123 Main St.
4275-8204-4009-7915

Desired Behavior

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Alice
123 Main St.
4275-8204-4009-7915

Information Flow Control

•  Information flow
control solves this
kind of problem

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Information Flow Control

/submit_order.cgi

Kernel

Label data with its
owner (contaminate
with respect to its
owner) Alice

123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Information Flow Control

/submit_order.cgi

Kernel

Keep track of who the
connection is for

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Information Flow Control

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Information Flow Control

/submit_order.cgi

Kernel

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Alice
123 Main St.
4275-8204-4009-7915

Track the
information as
it moves around
the operating
system

Information Flow Control

/submit_order.cgi

Kernel

Base access
control decisions
on labels

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

Alice
123 Main St.
4275-8204-4009-7915

Approaches:
Information Flow Control Systems

Within a process Across processes

P
ol

ic
y

de
fin

ed
 b

y:
 A
pp

lic
at

io
n

Determining MAC Access

The functionality provided by the interfaces to support MAC is used to
determine the access of objects by subjects. The POSIX.6 standard defines a
subject to be an active entity that can cause information to flow between
controlled objects. The POSIX.6 standard further specifies that since
processes are the only such interface-visible element of both the POSIX.1 and
POSIX.6 standards, processes are the only subjects treated in POSIX.6 MAC.
Objects are defined by POSIX.6 as the interface-visible data containers, i.e.,
entities that receive or contain data to which MAC is applied. POSIX.6
specifies that objects are files (this includes regular files, directories, FIFO-
special files, and unnamed pipes), and processes (in cases where a process
is the target of some request by another process). POSIX.6 also specifies that
each subject and object shall have a MAC label associated with it at all times.

The POSIX.6 standard does not define a mandatory access control policy
perse, but does define the restrictions for access based upon the comparison
of the MAC label associated with the subject and the MAC label associated
with the object. The first general restriction states that unprivileged processes
(subjects) cannot cause information labeled at some MAC label (L1) to
become accessible to processes at MAC label (L2) unless L2 dominates L1
(see Section 4.6.2 for the definition of ``dominates''). This restriction is further
defined with regard to accessing files and other processes. The restrictions
placed on file manipulation (reading, writing, creating, etc.) are those that are
generally accepted when implementing a MAC policy:

 1. to read a file, the label of the process must dominate the label of the file.
 2. to write to a file, the label of the process must be dominated by the label
of the file (The POSIX.6 standard specifies that dominance equals
equivalence - if the labels are equal, then each is considered to be dominant
to the other).

For example, a user who is running a process at Secret should not be allowed
to read a file with a label of Top Secret. Conversely, a user who is running a
process with a label of Secret should not be allowed to write to a file with a
label of Confidential.

The POSIX.6 restriction for assigning labels to newly created files is that the
new file must have a label that is dominant to the label of the subject, although
the POSIX.6 interfaces only allow the label to be equal to that of the process
creating the new object. This restriction forces

The POSIX.6 restriction for assigning labels to newly created files is that the
new file must have a label that is dominant to the label of the subject, although
the POSIX.6 interfaces only allow the label to be equal to that of the process
creating the new object. This restriction forces implementations to not allow
processes to create files at a ``lower'' label. For example, a process with a
label of Top Secret should not be allowed to create a file with a label of Secret.
There are analogous restrictions on object access when the object is a
process as mentioned above. K

er
ne

l

Conventional MLS

Asbestos

Aproaches:
Information Flow Control Systems

•  Conventional multi-level security

–  Kernel-enforced information flow control across
processes

–  A handful of levels and compartments: “secret, nuclear”
–  Inflexible, administrator-established policies
–  Central authority, no privilege delegation

•  Language-enforced information flow (Jif)

–  Applications can define flexible policies at compile time
–  Enforced within one process

•  Asbestos

–  Applications can define flexible policies
–  Kernel-enforced across all processes

Asbestos Goals
Asbestos should support efficient, unprivileged, and
large-scale server applications whose application-
defined users isolated from another by the operating
system, according to application policy.

Asbestos Goals
Asbestos should support efficient, unprivileged, and
large-scale server applications whose application-
defined users isolated from another by the operating
system, according to application policy.

Asbestos Goals

•  Large-scale
–  Changing population of thousands

•  Efficient
–  Cache user data, while keeping it isolated

•  Unprivileged
–  Minimum privilege required

•  Application defines notion of user
•  Isolation of users' data
•  Application policy

–  Application-defined, OS-enforced

Asbestos Overview

•  IPC similar to that of Mach
–  Messages sent to ports
–  Asynchronous, unreliable

•  Asbestos labels
–  Track, limit flow of information

•  Event processes
–  Efficiently support/isolate many concurrent users

Asbestos Compartments
•  Contamination / label type

–  Mike's data, Michele's data, Peter's business data
–  Example had two compartments: Alice & Bob

•  Created by application
–  Creator process can delegate rights
–  Kernel enforces compartment policy

Asbestos Labels

•  Each process has send and receive label
–  Send label track current contamination
–  Receive label tracks max contamination (clearance)

•  Rules enforced when messages are sent
•  Contamination of receiver updated

Asbestos Labels
•  Application can create compartments without

privilege

–  Application created users are isolated with the same
mechanism as login users

–  Applications can easily sub-divide privilege

•  Applications can delegate rights for compartments

–  Decentralized declassification like Jif

•  Applications can choose different policies

–  Mandatory Access Control
–  Discretionary Access Control
–  Capabilities
–  More...

Basic Label
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Send
Label

Recv
Label

Bob's
ahttpd

Backend
DB

Basic Label
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Basic Label
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Rule 1:
The kernel contaminates
the message with all of the
sender's contamination

Send
Label

Recv
Label

Basic Label
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Rule 2:
The kernel validates that the
destination has clearance to
receive the contamination of
the message

Send
Label

Recv
Label

Basic Label
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Rule 3:
At delivery, the destination
takes on the contamination
of the message

Send
Label

Recv
Label

Basic Label
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Implementing Clearance Checks
•  How does the clearance check work?
•  Labels form a lattice
•  Partial ordering

–  Sender's send label must be less than or equal to the
destination's receive label

•  Send label updated with a least upper bound
operator

v

v v

v

Limiting Bug
Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug
Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug
Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug
Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug
Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug
Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Application Defined Policies
•  Where did the compartments come from?

•  How did the labels get set the way they are?

•  In traditional multi-level security systems, the
system operator does these things

•  Asbestos labels provide a decentralized and
unprivileged method to set these initial conditions

Compartment
Creation

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Compartment
Creation

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

password

Compartment
Creation

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

password password

Compartment
Creation

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Any process that creates a
compartment gets privilege
with respect to that
compartment:

 Declassify data
 Grant clearance
 Delegate privilege

Send
Label

Recv
Label

Declassify
Receive

Alice's
ahttpd

 User

 Kernel

Bob's
ahttpd

Backend
DB

cgi script

Send
Label

Recv
Label

Optional Labels

•  Process can attach optional (discretionary) labels to
messages

–  CS – Contaminate Send
–  DR – Declassify Receive
–  DS – Declassify Send
–  V – Verify

Declassify
Receive

Alice's
ahttpd

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

cgi script

Declassify receive
grants clearance for
a compartment to
another process

Send
Label

Recv
Label

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

The kernel checks
that processes have
the privilege needed
to grant clearance

Send
Label

Recv
Label

DR=

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

DR=

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

No privilege needed
for CS – it can only
add processes to a
compartment

Send
Label

Recv
Label

CS=

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

CGI
Setup

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

Bob
Setup

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Bob
Setup

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Application Trust

Send
Label

Recv
Label

Label Implementation
•  Contamination & Privilege = Label level (*, 0-3)

•  = {A *, B 3, 1}

•  A & B are compartment names

•  Trailing 1 = Neutral in all other compartments

–  Including those that haven't been created yet

•  Label representation linear in # compartments

Declassification
•  Information flow control keeps users data

completely disjoint
•  Alice wants to export some of her data, like her

profile

–  But all her data is in her compartment
•  How can she safely declassify her data?
•  Alice must trust all process that can do so
•  To minimize declassification bugs, we build

declassifiers as simple, single purpose programs

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR = DS=

Send
Label

Recv
Label

The process must
have privilege for the
compartment to use
both DS and DR

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Since the process is
privileged in Alice's
compartment, it doesn't
get contaminated

profile

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

Other Label Features
•  Verify label on messages

–  Allows a process to prove it has labels at specific levels
•  Integrity tracking

–  Enabled by level 0

•  Different default level for send & receive labels

–  Enables interesting isolation policies

Preventing Contamination

•  Ports
–  Associated with receive label
–  Verification imposed by receiver
–  Deny decontamination of receive labels beyond

certain point
–  Receiver can grant rights to processes to send
–  Prevents arbitrary processes from sending to it

Combating Process Over-
Contamination

•  One process per user per service

–  Lots of heavy weight context switches
–  Lots of memory

•  Combine processes to get one process per
service?

–  Become too contaminated to function
–  Or too privileged

•  Many processes are similar
•  Programming style help?

Event Loop
while (1) {
 event = get_next_event();
 user = lookup_user(event);
 if (user not yet seen)
 user.state = create_state();
 process_event(event, user);
}
•  State isolated to data structures
•  Stack not used from event to event
•  Execution state has nice preemption points

Event Process Abstraction
 ep_checkpoint(&msg);
 if (!state.initialized) {
 initialize_state(&state);
 state.reply = new_port();
 }
 process_message(&msg, &state);
 ep_yield(); // revert to chkpointed memory

•  Fork memory state for each new session

–  Memory isolation is the same as fork
–  Small differences anticipated, stored efficiently (diff)

•  Event loop allows shared execution state

–  Allows light weight context switches

Event Processes Abstraction
•  Event process isolate state

–  Used so that each event process is only contaminated by
one user

–  One process per service with one event process per user

•  Even at 10,000 event processes, state is stored
efficiently

•  Little additional programmer overhead because
event processes fit into event driven programming
style

worker_N

worker_1

Web Server Architecture

Database

netd demux ahttpd-idd

db-proxy
worker_1

worker1

worker_N
workerN

Performance Hypotheses
•  Is the memory overhead from event processes

mild, even at 10,000 sessions?

•  Despite better security properties, is the
performance of the OK web server on Asbestos
comparable with Apache?

•  Does the per connection kernel overhead
increase at most linearly with the number of
sessions?

Experimental Setup – Memory

/shopping_cart.cgi

Hmm

•  Active session – Adding an
item to the shopping cart

•  Cached session – Deciding if
you really want an item

●  How much memory do event processes use?

●  Shopping cart application
–  Session state stored in event process
–  One event process per user

Click!

Event Processes Conserve Memory

•  Includes user and kernel memory

•  Not too many active sessions on a large website

1.45 pages/session

9.48 pages/session

Experimental Setup – Throughput
•  Simple character generation service

–  Not interested in application overhead
–  One event process per session (user)

•  Compare to Apache & Mod-Apache

–  Varied concurrency to get best case performance

•  Apache
–  Service runs as a CGI script
–  Connections are isolated into processes
–  Processes are not isolated or jailed on the system

•  Mod-Apache

–  Service runs inside Apache process
–  i.e. did not fork a worker process

●  For 16 sessions, 150% of Apache

●  For 10,000 session, 75% of Apache

Good Throughput

Latency

Label Cost Linear in Label Size

•  Label cost
starts small
but outstrips
OKWS cost
around 6500
sessions

•  Declassifiers
label size O
(#sessions)

●  Throughput benchmark

●  DB performance fixed

Future Work
•  Minimizing label costs

•  Easing programmability

•  Label persistence

•  More applications

Perspective
•  Asbestos labels make MAC (mandatory access

control) tractable

–  Labels provide decentralized compartment creation &
privilege

–  Event processes avoid accumulation of contamination
•  The OK web server on Asbestos

–  Performs comparably to Apache
–  Provides better security properties than Apache

•  Lessons/Flaws
–  Increased cached sessions decrease performance
–  Label checking scales linearly with number of labels

•  “at least not quadratic or exponential”!

Next Time

•  Read and write review:
–  Exokernel: an operating system architecture for

application-level resource management, Dawson R.
Engler, M. Frans Kaashoek, and James O'Toole, Jr.
15th ACM symposium on Operating systems
principles (SOSP), December 1995, pages 251—266

–  Extensibility, Safety and Performance in the SPIN
Operating System, Brian N. Bershad, Stefan Savage,
Przemyslaw Pardyak, Emin Gun Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, Susan
Eggers. 15th ACM symposium on Operating
systems principles (SOSP), December 1995, pages
267--283.

Next Time

•  Read and write review:

•  Project Proposal
–  Return comments later today

•  Project Survey Paper due next Friday

•  Check website for updated schedule

