Novel File Systems

Presented by Ki Suh Lee
(Based on slides from
Hakim Weatherspoon and
Mahadev Sataynarayanan)

M. Satyanarayanan

e Systems faculty at Carnegie-Mellon University

* A principal architect and implementor of the
Andrew File System (AFS)

* Inspired CODA and another 20 years of
research

<
\ O
p— L g
) Lo, 4 s .
"~ AR "
X ‘-:- ll |I)) |
Coda N o
\ Mellon
\ # 4
oA ! =
A , | =
\ .]

Coda is a distributed file system
Since 1987

The latest release is Coda 6.9.4 (Jan 09)
47 publications including 6 PhD Theses
Evolved with usage experience.

Motivation for Coda

* Epilogue to the Andrew File System (AFS)

* AFS was found to be vulnerable to
server and network failures

— Not that different from NFS
— Limits scalability of AFS
* Coda provides high data availability
— Server replication (optimistic replication)
— Disconnected operation

Coda Cartoon

http://www.cs.cmu.edu/~coda/images/nikkei-PAGE-213.JPG

Level of Activity

Timeline

Conceptualization

Detailed Design & Implementation

* Measurement & Evaluation

= = = = Deployment & Initial Refinement
....................... Ongoing Improvement

Q Acceptance Date of Key Publication

P

Lessons Learned

Optimistic Replication

Real systems need real users
Timing

Long software tail

Moore’s Law

Code reuse

System admins

Short projects never die

Outline

Server Replication

Recoverable Virtual Memory (RVM)
Disconnected Operation

Conflict Resolution

Server Replication: 1987-1991

e Optimistic replication control protocols allow
access in every disconnected mode

— Tolerate temporary inconsistencies
— Promise to detect them later
— Provide much higher data availability
e Optimistic replication control requires a

reliable tool for detecting inconsistencies
among replicas

— Better than LOCUS tool

Replica Control

http://www.cs.cmu.edu/~coda/images/nikkei-PAGE-216.JPG

Volume

Volume storage group
(VSG)

accessible volume
storage group (AVSG)

Preferred server (PS)

Read-one-data, read-
all-status, write-all

Read

Client

A
gec? s
m

Protocol

Server 1

Fetch [PS = 1}—»

<+«— [status]

Server 2

\[
StatUS]

Feteh ipg _ 1)
e

Server 3

Read Protocol

 Client fetches data from PS
e Also collects version information from AVSG

e |f a conflictis detected

— Abort the read
— Update stale replicas
— Restart the fetch

Update Protocol

Server 1

] > COP1 [status, data -
C||er]'|:< COP2 [update set | —» Server 2

Server 3

Update Protocol

* File modifications and directory updates are
written to all members of AVSG

 Two phases commit
— In COP1, new status and data are sent

— In COP2, update set is sent asynchronously

— Non-blocking

Consistency Model

* Accessible universe: set of replicas that the
user can access

— Accessible universe varies over time
* One-copy serializability at open-close
granularity in the accessible universe

— Will read from the latest replica in accessible
universe

— Will update all replicas in accessible universe

Fault-tolerance

* Correctness of update protocol requires
atomicity and permanence of metadata
updates

* Recoverable virtual memory (RVM)

— Implemented as a library

Lightweight Recoverable Virtual Memory

* RVM updates persistent data structures in a
fault-tolerant manner.
* Allows independent control over the
transactional properties.
* Minimalism
— Value Simplicity
— portability
— User-level library with minimal programming
constraints.

Camelot

e Used for two phase optimistic replication
protocol by CODA

* Poor scalability, programming constraints, and
difficulty of maintenance
— Considerable paging and context switching
— Mach threads
— Code size, tight dependence on Mach features

* Coda only wanted recoverable virtual memory

Design Rationale

Keep it simple!
Factor out

— Nesting

— Distribution

— Concurrency control
— Resiliency

Instead, a layered
approach

Less dependence on OS
Structured as a library

Application Code

Nosting | Distribution | Seriatizabity

Operating System

Permanence. media fallwre

Figure 2: Layering of Functionality in RVM

LRVM: Segments and Regions

* Applications map regions of segments into
their virtual memory.

Unix Virtual Memory _&;_1
ﬁ“. xj SRR S
0 \ 2
S “e e TR
Segment-1
0 281
SRS ARe ¢es
Segmenl-2

20

Architecture

Newly mapped data represents the committed
image of the region

No region of a segment can be mapped more
then once by the same process

No overlap

Can be unmapped at any time, as long as no
uncommitted transactions outstanding

simple APIs

LRVM: Crash Recovery

* Recovery consists of reading the log from tail
to head and then reconstructing the last
committed changes.

 Modifications are applied to the external data
segment.

* Logis emptied.

LRVM: Truncation

* Reclaiming space in the log by applying
changes to the external data segment.

* Necessary because space is finite.

Evaluation

* 10K lines of C, compared to 60K lines in
Camelot

* Performance
— Lack of RVM and VM integration
— Scalability
— Optimization
 Overall, RVM is better then Camelot.

1

201

Transactional Throughput

N ’
1 o
o0
~
s+t RVM Sequential & Lo
w—a Cameolol Sequen
w = RVM Rsrdom

» -« Camelot Random

n~“~°"-0~.o

% 20 40 60 80 100 120 140 160 160
Rmem/Pmem (per cent)
(a) Best and Worst Cases

Transactions/sec
S 3

s

2’0Il

AL
..........

e RVM Lcu:oﬂzod~
s...a Camelot Locali,

0

20 40 60 80 100 120 140 160 180
Rmem/Prmem (per cent)
(b) Average Case

These plots illustrate the data in Table 1, For clarity, the average case is presented separately from the best and worst cases,

Scalability

» = Camelo! Rmdom
o Camelo! Sequentin/
+ = RVM Random

RVM L.

u,“"
-n’
JD"V

ne?

=

20 40 60 80 100 120 140 160 160
Rmem/Pmem (per cent)
(a) Worst and Best Cases

b

0

w0 Camelol Localized
virs RYM Locaized

0. 8. 000
u"'u"'“'"““"
w00
g 0

\ TR
.lu-.u.-..-n‘-n‘.-o‘ou‘uc‘u-...--c'no.U..-'. ‘)

20 40 60 60 100 120 140 7160 180
Rmem/Pmem (per cent)
(b) Average Case

Outline

* Disconnected Operation
* Conflict Resolution

Disconnected Operation: 1988-1993

* Network isolation

— Correlated server crashes

— Overloaded or faulty routers
* Caching

— Optimistic replication

— Improve availability

Disconnected Operation

* Complimentary to server replication
— Server replicas are first-class replicas
— Cached replicas are secondary replicas

Implementation

Physical
reconnection

Hoarding

* Implicit / Explicit sources of implementation

 Hoard database (HDB)
— Specifies files to be cached
— Users update directly or via command scripts
— Venus periodically reevaluates every ten minutes

Emulation / Reintegration

* While disconnected, All changes are written to
a log, Client modification log (CML)

* After reconnection, perform reintegration for
each volume independently.

— Venus sends CML to all volumes

— Each volume performs a log replay algorithm

Outline

e Conflict Resolution

Conflict Resolution

e Syntactic approach to detect absence of
conflicts.

— Server replication

— Version checks during the hoarding and
reintegration

* Semantic approach to resolve conflicts

— Different control for directory and file resolution

Conflict Resolution: Objectives

No updates should ever be lost without explicit
user approval

The common case of no conflict should be fast

Conflicts are ultimately an application-specific
concept

The buck stops with the user

Directory Resolution

* Automatic resolution by Coda

e After disconnected operation
— Apply the CML

* During connected operation

— Resolution log

— Recovery protocol locks the replicas merges the
logs and distributes the merged logs.

Application-Specific File resolution

* Application-specific resolvers (ASRs) are
executed entirely on clients.

Conflict representation

$ 1ls -1

total 364

-TW-r--X-- 1 satya 4976 Jun 28 08:42 cevolSS.aux

[xr=—=x--x-- 1 root 27 Jun 29 11:08 cevold9.bib -> €6. a
W= L= == 1 satya 528 Jun 28 08:42 cevolSS.err

-YW-Y=--Y=-- 1 satya 87070 Jun 28 08:41 cevolSS.mss

-YWw-r--xr-- 1 satya 6937 Jun 28 08:42 cevolSS.otl

-Yw-Y--r-- 1 satya 267914 Jun 28 08:42 cevolSS.ps

(a) Before repair

$1s -1R cevol99.bib
total 75
-rw-Y--r-- 1 satya 26290 Jun 29 11:04 marais.coda.cs.cmu.edu
-Yw-Y--y-- 1 satya 20286 Jun 29 11:03 mozart.coda.cs.cmu.edu
“YW-Y=--Y-- 1 satya 26290 Jun 29 11:04 verdi.coda.cs.cmu.edu
(b) During repair
S 1s -1
total 390
-XW-Lr==Y=~- 1 satya 4976 Jun 28 08:42 cevol99.aux
-IW-r--Yr-- 1 ras 26290 Jun 29 11:09 cevol®9.bib
~YW-Y=-Y--~ 1 satya 528 Jun 28 08:42 cevolS9.err
-IW-L==X-~ 1 satya 87070 Jun 28 08:41 cevolS9.mss
-YW-Y=-=-Y-- 1 satya 6937 Jun 28 08:42 cevolS9.otl
-IW=L==Y=~ 1 satya 267914 Jun 28 08:42 cevolS9.ps

(c) After repair

Lessons Learned

Optimistic Replication

Real systems need real users
Timing

Long software tail

Moore’s Law

Code reuse

System admins

Short projects never die

Discussion

