
Concurrency,
Threads, and Events

Presented by Hakim Weatherspoon

On the Duality of Operating System
Structures

Hugh C. Lauer and Roger M Needham
•  Hugh C. Lauer

– Another Xerox Park person
– Founded a number of businesses:

Real-Time Visualization unit of
Mitsubishi Electric Research Labs (MERL)

•  Roger M. Needham
– Known for

 Kerberose, Needham-Schroeder security protocol,
and key exchange systems

Message vs Procedure oriented system
(i.e. Events vs Threads)

•  Are they really the same thing?
•  Lauer and Needham show

–  1) two models are duals
•  Mapping exists from one model to other

–  2) dual programs are logically identical
•  Textually similar

–  3) dual programs have identical performance
•  Measured in exec time, compute overhead, and queue/

wait times

Message-oriented system

•  Calls:
– SendMessage, AwaitReply
– SendReply
– WaitForMessage

•  Characteristics
– Synchronization via message queues
– No sharing of data structures/address space
– Number of processes static

Message-oriented system

Process-oriented system

•  Calls:
– Fork, Join (process)
– Wait, Signal (condition variables)

•  Characteristics
– Synchronization via locks/monitors
– Share global address space/data structures
– Process creation very dynamic and low-overhead

Process-oriented system

Duality

•  Can map one model to the other

Preservation of Performance

•  Performance characteristics
– Same execution time
– Same computational overhead
– Same queuing and waiting times

•  Do you believe they are the same?
•  What is the controversy?

SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services

(Welsh, 2001)

•  20 to 30 years later, still controversy!

•  Analyzes threads vs event-based systems,
finds problems with both

•  Suggests trade-off: stage-driven architecture
•  Evaluated for two applications

– Easy to program and performs well

SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services

(Welsh, 2001)

•  Matt Welsh
– Cornell undergraduate Alum

•  Worked on U-Net
– PhD from Berkeley

•  Worked on Ninja and other clustering systems
– Currently works on sensor networks

What is a thread?

•  A traditional “process” is an address space
and a thread of control.

•  Now add multiple thread of controls
– Share address space
–  Individual program counters and stacks

•  Same as multiple processes sharing an
address space.

Thread Switching

•  To switch from thread T1 to T2:
– Thread T1 saves its registers (including pc) on

its stack
– Scheduler remembers T1’s stack pointer
– Scheduler restores T2’ stack pointer
– T2 restores its registers
– T2 resumes

Thread Scheduler

•  Maintains the stack pointer of each thread
•  Decides what thread to run next

– E.g., based on priority or resource usage
•  Decides when to pre-empt a running thread

– E.g., based on a timer
•  Needs to deal with multiple cores

– Didn’t use to be the case
•  “fork” creates a new thread

Synchronization Primitives

•  Semaphores
–  P(S): block if semaphore is “taken”
–  V(S): release semaphore

•  Monitors:
–  Only one thread active in a module at a time
–  Threads can block waiting for some condition using the

WAIT primitive
–  Threads need to signal using NOTIFY or

BROADCAST

Uses of threads

•  To exploit CPU parallelism
– Run two CPUs at once in the same program

•  To exploit I/O parallelism
– Run I/O while computing, or do multiple I/O
–  I/O may be “remote procedure call”

•  For program structuring
– E.g., timers

Common Problems

•  Priority Inversion
–  High priority thread waits for low priority thread
–  Solution: temporarily push priority up (rejected??)

•  Deadlock
–  X waits for Y, Y waits for X

•  Incorrect Synchronization
–  Forgetting to release a lock

•  Failed “fork”
•  Tuning

–  E.g. timer values in different environment

What is an Event?

•  An object queued for some module
•  Operations:

–  create_event_queue(handler) EQ
–  enqueue_event(EQ, event-object)

•  Invokes, eventually, handler(event-object)

•  Handler is not allowed to block
– Blocking could cause entire system to block
– But page faults, garbage collection, …

Example Event System

(Also common in telecommunications industry, where it’s
called “workflow programming”)

Event Scheduler

•  Decides which event queue to handle next.
– Based on priority, CPU usage, etc.

•  Never pre-empts event handlers!
– No need for stack / event handler

•  May need to deal with multiple CPUs

Synchronization?

•  Handlers cannot block no
synchronization

•  Handlers should not share memory
– At least not in parallel

•  All communication through events

Uses of Events

•  CPU parallelism
– Different handlers on different CPUs

•  I/O concurrency
– Completion of I/O signaled by event
– Other activities can happen in parallel

•  Program structuring
– Not so great…
– But can use multiple programming languages!

Common Problems

•  Priority inversion, deadlock, etc. much the
same with events

•  Stack ripping

Threaded Server Throughput

Event-driven Server Throughput

Threads vs. Events

•  Events-based systems use fewer resources
– Better performance (particularly scalability)

•  Event-based systems harder to program
– Have to avoid blocking at all cost
– Block-structured programming doesn’t work
– How to do exception handling?

•  In both cases, tuning is difficult

SEDA

•  Mixture of models of threads and events
•  Events, queues, and “pools of event

handling threads”.
•  Pools can be dynamically adjusted as need

arises.

SEDA Stage

Best of both worlds

•  Ease of programming of threads
– Or even better

•  Performance of events
– Or even better

•  Did we achieve Lauer and Needham’s
vision with SEDA?

Next Time
•  Read and write review:

•  Lab 0 – graded
•  Lab 1 – due this Friday

– Let us know how you are doing; if need help

•  Project Proposal due in one and half weeks
– Projects presentations tomorrow, Wed, 4pm, syslab
– Also, talk to faculty and email and talk to me

•  Check website for updated schedule

Next Time

•  Read and write review:
– A Fast File System for UNIX. Marshall K.

McKusick, William N. Joy, Samuel J. Leffler,
Robert S. Fabry. ACM TOCS 2(3), Aug 1984,
pages 181 -- 197.

– The Design and Implementation of a Log-
Structured File System, Mendel Rosenblum and
Ousterhout. Proceedings of the thirteenth ACM
symposium on Operating systems principles,
October 1991, pages 1--15.

Ken Birman’s research
•  I work primarily on scalable, fault-tolerant computing for the

cloud. Also interested in practical security technologies

•  I’m a builder. Right now I’m building a system called Isis2
(hear more at upcoming BB lunch)
–  Isis2 embodies some deep principles: a rigorous model
–  Think of it as the implementation of a new theory of scalability

and stability for cloud-scale data replication

•  My current agenda: leverage advances in machine learning to
overcome obstacles in scalability for reliable distributed systems

Three possible cs6410 topics: I
•  Brewer sees a deep tradeoff between consistency in replicated

data, availability and partition tolerance (CAP). Nancy Lynch
formalized this and proved a theorem.

•  But is CAP a valid barrier in real cloud systems?
–  The cloud community thinks so (but what do they know?)
–  Alternative hypothesis: CAP holds, but only in some peculiar conditions,

and only if the system is limited to pt-to-pt (TCP) communication
(reminiscent of FLP impossibility)

–  Topic: establish the bottom line truth
–  Challenge: experimental validation of findings would be obligatory

•  Longer term: Leverage insights to offer a consistency “platform”
to developers of cloud applications

Three possible cs6410 topics: II
•  Barebones routing

–  Suppose you have a physical router under control of
your software, with ownership of its own optical fiber

•  Or a virtual one, running with a virtual “share” of the optical
fibers in some Internet setting

–  Minimal operating system, other software
–  Could you implement a new routing infrastructure that

composes, is secure, offers path redundancy (for mobile
sources too, not just destinations), and scales up to
handle billions of connections?

•  Longer term: build it, deploy on NEBULA (joint
project with Cisco researchers)

Three possible cs6410 topics: III

•  What is the very best way to do flow control
for multicast sessions?
–  We already have flow control for point-to-point;

we call it TCP and it rules the world
–  IP multicast malfunctions by provoking loss if

abused, yet we lack a good flow control policy for
IPMC. But prior work in our group suggests that
these issues can be overcome

–  Goal here would be to solve the problem but also
create a theory of stability for scaled-up solution

•  Long term: implement within Isis2

Connection to machine learning
•  Most of these are “old” topics, but in the old days

we worked on small scenarios: 3 servers replicating
data, for example

•  Today, cloud computing systems are immense and
scale can make these problem seem impossibly hard
(in sense of complexity theory)

•  But with machine learning can potentially
–  Discover structure, such as power-law correlations in

behavior, preferential attachment
–  Exploit that structure to obtain provably stable and

scalable solutions to problems that matter

Daniel Freedman, Cornell University

Exact temporal characterization of
10 Gbps optical wide-area network

September 7, 2010 Cornell University, CS 6410 Presentation

Daniel A. Freedman, Tudor Marian, Jennifer H. Lee,
Ken Birman, Hakim Weatherspoon, Chris Xu

Research Agenda…

•  Understand novel behavior
 of high-performance,
 lightly loaded WAN links

•  Appreciate distortive impact
 of endpoint network adapters

•  Design instrumentation (BiFocals)
 for precise network measurements

38

ht
tp

://
tin

yu
rl.

co
m

/y
l9

q8
rg

ht
tp

://
tin

yu
rl.

co
m

/y
8q

oq
w

x

End-to-End Loss and the WAN

•  Endpoints drop packets
– Even at moderate data rates
– Dropped at endpoint
– Not an endpoint-only effect

•  WAN converts input flow, with packets
homogeneously distributed in time, into
series of minimally-spaced chains of
packets

39

ht
tp

://
tin

yu
rl.

co
m

/2
8j

d7
3o

ht
tp

://
tin

yu
rl.

co
m

/y
8p

ljt
5

Instrumentation and WAN Testbed

•  Core architecture of BiFocals:
 Exact timings at 10 Gbps!

•  National LamdaRail (NLR)
– Static routing
– High-performance & semi-private
– Spans 15,000 km across 11 routers

40

ht
tp

://
tin

yu
rl.

co
m

/5
bl

u3
n

Exact Packet-Timing Measurements

41

  Peak at minimum inter-packet gap
  Packet chains of increasing length are

exponentially less frequent!

Future Work: Characterizing NICs

•  Compute time delay between consecutive
packets for both methods (BiFocals / NIC)

•  Use to build empirical deconvolution
function
– Allows higher precision measurements with

normal NICs by “backing out” distortive effects
42

t0 t1 dBiFocals

dNIC t0 t1

