Concurrency,
Threads, and Events

Presented by Hakim Weatherspoon

On the Duality of Operating System

Structures

Hugh C. Lauer and Roger M Needham
* Hugh C. Lauer

— Another Xerox Park person

— Founded a number of businesses:

Real-Time Visualization unit of
Mitsubishi Electric Research Labs (MERL)

 Roger M. Needham

— Known for

Kerberose, Needham-Schroeder security protocol,
and key exchange systems

Message vs Procedure oriented system
(1.e. Events vs Threads)

* Are they really the same thing?

* Lauer and Needham show
— 1) two models are duals
* Mapping exists from one model to other
— 2) dual programs are logically 1dentical
e Textually similar

— 3) dual programs have 1dentical performance

* Measured in exec time, compute overhead, and queue/
wait times

Message-oriented system

» Calls:
— SendMessage, AwaitReply

— SendReply
— WaitForMessage

* Characteristics
— Synchronization via message queues

— No sharing of data structures/address space
— Number of processes static

Message-oriented system

begin m: messageBody;
i messageld;
p: portld;
s: set of portld;
.+ . ~local data and state information for this process
initialize;
do forever;
[m, i, p) + WaitForMessage{s];
case p of
portl =>. .. --algorithm for portl
port2 => ...
if resourceExhausted then
s *s-pon2,;
SendReplyli. reply]:
.« « » =algorithm for port2

portk => ...
$ + s + port2
.« « » —algorithm for portk
endcase;
endloop;

Process-oriented system

o (Calls:

— Fork, Join (process)

— Wait, Signal (condition variables)

* Characteristics
— Synchronization via locks/monitors
— Share global address space/data structures

— Process creation very dynamic and low-overhead

Process-oriented system

ResourceManager: MONITOR =

END.

C: CONDITION;
resourceExhausted: BOOLEAN;
...=-global data and state information for tl

proc1: ENTRY PROCEDURE[. ..] =
.« .3 --algorithm for proc1

Proc2: ENTRY PROCEDURE[. ..] RETURNS[...]
BEGIN
IF resourceExhausted THEN WAI

;!‘e{'uanlruults];
END; --;ig'o.mhm forproc2

procL: ENTRY PROCEDURE[...] =
BEGIN

.r;;aurcoExhausted « FALSE;

SIGNAL C;
END; ~-;|ig.¢;rlthm forprocl
endloop;
initialize;

Duality

Message-oriented system Procedure-oriented system
Processes, CreateProcess Monitors, NEW/START
Message Channels External Procedure identifiers
Message Ports ENTRY procedure identifiers
SendMessage; AwaitReply simple procedure call
(nmmcdmte&e
SendMessage; . .. AwaitReply FORK; . .. JOIN
(delayed)

SendReply RETURN (from procedure)

main loop of standard resource monitor lock, ENTRY attribute
manager, WaitForMessage statement,

case statement

arms of the case statement ENTRY procedure declarations
selective waiting for messages condition vanriables, WAIT, SIGNAL

* Can map one model to the other

Preservation of Performance

 Performance characteristics
— Same execution time
— Same computational overhead

— Same queuing and waiting times
* Do you believe they are the same?

* What is the controversy?

SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services
(Welsh, 2001)

20 to 30 years later, still controversy!

Analyzes threads vs event-based systems,
finds problems with both

Suggests trade-off: stage-driven architecture

Evaluated for two applications

— Easy to program and performs well

SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services
(Welsh, 2001)

* Matt Welsh
— Cornell undergraduate Alum
* Worked on U-Net
— PhD from Berkeley

* Worked on Ninja and other clustering systems

— Currently works on sensor networks

What is a thread?

A traditional “process” 1s an address space
and a thread of control.

* Now add multiple thread of controls
— Share address space

— Individual program counters and stacks

* Same as multiple processes sharing an
address space.

Thread Switching

e To switch from thread T1 to T2:

— Thread T1 saves its registers (including pc) on
its stack

— Scheduler remembers T1’s stack pointer
— Scheduler restores T2’ stack pointer

— T2 restores its registers

— T2 resumes

Thread Scheduler

Maintains the stack pointer of each thread
Decides what thread to run next
— E.g., based on priority or resource usage
Decides when to pre-empt a running thread
— E.g., based on a timer
Needs to deal with multiple cores
— Didn’t use to be the case

“fork™ creates a new thread

Synchronization Primitives

* Semaphores
— P(S): block 1f semaphore 1s “taken”
— V(S): release semaphore

e Monitors:
— Only one thread active in a module at a time

— Threads can block waiting for some condition using the
WAIT primitive

— Threads need to signal using NOTIFY or
BROADCAST

Uses of threads

* To exploit CPU parallelism

— Run two CPUs at once in the same program

* To exploit I/O parallelism
— Run I/0 while computing, or do multiple I/O
— I/O may be “remote procedure call”

* For program structuring

— E.g., timers

Common Problems

Priority Inversion
— High priority thread waits for low priority thread
— Solution: temporarily push priority up (rejected??)
Deadlock
— X watits for Y, Y waits for X

Incorrect Synchronization
— Forgetting to release a lock

Failed “fork™
Tuning
— E.g. timer values in different environment

What 1s an Event?

* An object queued for some module

* Operations:
— create_event queue(handler) 2 EQ

— enqueue event(EQ, event-object)
 Invokes, eventually, handler(event-object)

» Handler 1s not allowed to block
— Blocking could cause entire system to block
— But page faults, garbage collection, ...

Example Event System

file data
Socket iisten CacheMiss 1o file 1iO
: request
[| | , HttpParse HTTP PageCache] | —- [[|
connection wictlon request 4561'9
Socket read / [11 —- []] fiSs HttoSend Socket write
acket packet
L] el — 1

(Also common 1n telecommunications industry, where 1t’s
called “workflow programming”)

Event Scheduler

* Decides which event queue to handle next.
— Based on priority, CPU usage, eftc.

* Never pre-empts event handlers!

— No need for stack / event handler

* May need to deal with multiple CPUs

Synchronization?

» Handlers cannot block = no
synchronization

* Handlers should not share memory

— At least not 1n parallel

* All communication through events

Uses of Events

* CPU parallelism
— Difterent handlers on different CPUs
* [/O concurrency

— Completion of I/O signaled by event
— Other activities can happen 1n parallel

* Program structuring
— Not so great...
— But can use multiple programming languages!

Common Problems

 Priority inversion, deadlock, etc. much the
same with events

» Stack ripping

Threaded Server Throughput

20000 - . — — —— - 400
Throughput g
Latency ==
Linear(ideal) latency === 350
25000 - - -

o
® 20000
B Q
+ 3
a E
‘é 15000 E
L
S :
o -l
é 10000

5000

16 64 256 1024
Number of threads

Event-driven Server Throughput

40000

— Th'rngh;':ut'—i—' .

25000 - Latency =B
Linear (ideal) latency s=E=-

20000

30000
25000

20000

20000

Latency, msac

15000

Throughput, tasks/sac

10000

10000

5000

" 1 0
1048576

1 32 1024 22768
Number of tasks in pipeline

Threads vs. Events

* Events-based systems use fewer resources
— Better performance (particularly scalability)

» Event-based systems harder to program
— Have to avoid blocking at all cost
— Block-structured programming doesn’t work
— How to do exception handling?

* In both cases, tuning 1s difficult

SEDA

 Mixture of models of threads and events

* Events, queues, and “pools of event
handling threads™.

* Pools can be dynamically adjusted as need
arises.

SEDA Stage

Outgoing

Event Queue

Events o 1HN T
?;?? e 575

Thread Pool

(-

Controller

Best of both worlds

* Ease of programming of threads

— Or even better

e Performance of events

— Or even better

 Did we achieve Lauer and Needham’s
vision with SEDA?

Next Time

Read and write review:

Lab 0 — graded
Lab 1 — due this Friday

— Let us know how you are doing; if need help

Project Proposal due in one and half weeks
— Projects presentations tomorrow, Wed, 4pm, syslab
— Also, talk to faculty and email and talk to me

Next Time

e Read and write review:

— A Fast File System for UNIX. Marshall K.
McKusick, William N. Joy, Samuel J. Leffler,
Robert S. Fabry. ACM TOCS 2(3), Aug 1984,
pages 181 -- 197.

— The Design and Implementation of a Log-
Structured File System, Mendel Rosenblum and
Ousterhout. Proceedings of the thirteenth ACM
symposium on Operating systems principles,
October 1991, pages 1--15.

Ken Birman’s research

I work primarily on scalable, fault-tolerant computing for the
cloud. Also interested in practical security technologies

I’m a builder. Right now I’m building a system called Isis?
(hear more at upcoming BB lunch)

— Isis? embodies some deep principles: a rigorous model

— Think of it as the implementation of a new theory of scalability
and stability for cloud-scale data replication

My current agenda: leverage advances in machine learning to
overcome obstacles in scalability for reliable distributed systems

Three possible ¢s6410 topics: 1

* Brewer sees a deep tradeoff between consistency in replicated
data, availability and partition tolerance (CAP). Nancy Lynch
formalized this and proved a theorem.

* Butis CAP a valid barrier 1n real cloud systems?

— The cloud community thinks so (but what do they know?)

— Alternative hypothesis: CAP holds, but only in some peculiar conditions,
and only if the system is limited to pt-to-pt (TCP) communication
(reminiscent of FLP impossibility)

— Topic: establish the bottom line truth
— Challenge: experimental validation of findings would be obligatory

* Longer term: Leverage insights to offer a consistency “platform”
to developers of cloud applications

Three possible ¢cs6410 topics: 11

* Barebones routing
— Suppose you have a physical router under control of

your software, with ownership of its own optical fiber

 Or a virtual one, running with a virtual “share” of the optical
fibers in some Internet setting

— Minimal operating system, other software

— Could you implement a new routing infrastructure that
composes, 1s secure, offers path redundancy (for mobile
sources too, not just destinations), and scales up to
handle billions of connections?

* Longer term: build 1t, deploy on NEBULA (joint
project with Cisco researchers)

Three possible ¢s6410 topics: 111

* What is the very best way to do flow control
for multicast sessions?

— We already have flow control for point-to-point;
we call it TCP and 1t rules the world

— [P multicast malfunctions by provoking loss if
abused, yet we lack a good flow control policy for
IPMC. But prior work in our group suggests that
these 1ssues can be overcome

— Goal here would be to solve the problem but also
create a theory of stability for scaled-up solution

« Long term: implement within Isis?

Connection to machine learning

* Most of these are “old” topics, but in the old days
we worked on small scenarios: 3 servers replicating
data, for example

* Today, cloud computing systems are immense and
scale can make these problem seem impossibly hard
(in sense of complexity theory)

* But with machine learning can potentially

— Discover structure, such as power-law correlations in
behavior, preferential attachment

— Exploit that structure to obtain provably stable and
scalable solutions to problems that matter

Exact temporal characterization of
10 Gbps optical wide-area network

September 7, 2010 Cornell University, CS 6410 Presentation

Research Agenda...

« Understand novel behavior ' A/l

/‘

7

of high-performance,
lightly loaded WAN links

» Appreciate distortive impact

of endpoint network adapters

* Design instrumentaton (BiFocals)

for precise network measurements

* Endpoints drop packets
— Even at moderate data rates

— Dropped at endpoint
— Not an endpoint-only effect

 WAN converts input flow, with packets
homogeneously distributed 1n time, 1nto

. G Y o
Y0 12345 €

Instrumentation and WAN Testbed

+ Core architecture of BiFocals!

Off:

Exact timings at 10 Gbps!
* National LamdaRail (NLR)

— Static routing

<— Real-time

Exact Packet-Timing Measurements

= Peak at minimum 1inter-packet gap
= Packet chains of increasing length are

Probability

1 |
exponentially less frequent!
7 100 — — 10° — 10° : : ' . :
-~
peg—] 10?‘ . //',// = = Fit to chains (I >1)
o > 10° Em Measure d values
o sof 1 = 1]
< 2 g 10 10
a a 10°
k5 or l 10! 5
£ 25 L —L L 10° 107 t
0 25 75 100 1.14 1.2 1.26 132 -
Inter-packet Delay [;:S] E =
a 10
>
8 10"
<
a.
10° |
| . TR ' T
25 50 75 100 1075 > n 5 8 10

Inter-packet Delay [1s] Length of Chains [# of packets]

Future Work: Characterizing NICs

* Compute time delay between consecutive
packets for both methods (P'FOCf s/ NIC

z
g 25
10° %’ 0 8
o o 0
< -50 E
w -25
1 B 0 25 50 75 100 0.0 0.2 04 0.6 08 1.0
> 10°
E
2
o
4
a.
10°

PPPPPPP

BiF ocals

Oj) OO0 O O

Use to build empirical deconvolution
function

— Allows higher precision measurements with 42
normal NICs by “backing out” distortive effects

