
Classic Systems:
Unix and THE

Presented by Hakim Weatherspoon

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

•  Background of authors at Bell Labs
–  Both won Turing Awards in 1983

•  Dennis Ritchie
–  Key developer of The C Programming Lanuage, Unix,

and Multics
•  Ken Thompson

–  Key developer of the B programming lanuage, Unix,
Multics, and Plan 9

–  Also QED, ed, UTF-8

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

•  Classic system and paper
–  described almost entirely in 10 pages

•  Key idea
–  elegant combination of a few concepts that fit together

well

System features

•  Time-sharing system
•  Hierarchical file system
•  Device-independent I/O
•  Shell-based, tty user interface
•  Filter-based, record-less processing paradigm

Version 3 Unix

•  1969: Version 1 ran PDP-7
•  1971: Version 3 Ran on PDP-11’s

–  Costing as little as $40k!
•  < 50 KB
•  2 man-years

 to write
•  Written in C

PDP-7 PDP-11

File System

•  Ordinary files (uninterpreted)
•  Directories (protected ordinary files)
•  Special files (I/O)

Directories

•  root directory
•  path names
•  rooted tree
•  current working directory
•  back link to parent
•  multiple links to ordinary files

Special Files

•  Uniform I/O model
–  Each device associated with at least one file
–  But read or write of file results in activation of device

•  Advantage: Uniform naming and protection model
–  File and device I/O are as similar as possible
–  File and device names have the same syntax and

meaning, can pass as arguments to programs
–  Same protection mechanism as regular files

Removable File System

•  Tree-structured
•  Mount’ed on an ordinary file

–  Mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

–  After mount, virtually no distinction between files on
permanent media or removable media

Protection

•  User-world, RWX bits
•  set-user-id bit
•  super user is just special user id

Uniform I/O Model

•  open, close, read, write, seek
–  Uniform calls eliminates differences between devices

•  other system calls
–  close, status, chmod, mkdir, ln

•  bytes, no records

File System Implementation

•  System table of i-numbers (i-list)
•  i-nodes
•  path name scanning
•  mount table
•  buffered data
•  write-behind

I-node Table

•  short, unique name that points at file info.
•  allows simple & efficient fsck
•  cannot handle accounting issues

File name Inode# Inode

Processes and images

•  text, data & stack segments
•  process swapping
•  pid = fork()
•  pipes
•  exec(file, arg1, ..., argn)
•  pid = wait()
•  exit(status)

The Shell

•  cmd arg1 ... argn
•  stdio & I/O redirection
•  filters & pipes
•  multi-tasking from a single shell
•  shell is just a program

•  Trivial to implement in shell
–  Redirection, background processes, cmd files, etc

Traps

•  Hardware interrupts
•  Software signals
•  Trap to system routine

Perspective

•  Not designed to meet predefined objective
•  Goal: create a comfortable environment to

explore machine and operating system
•  Other goals

–  Programmer convenience
–  Elegance of design
–  Self-maintaining

“THE”-Multiprogramming System
Edsger W. Dijkstra

•  Received Turing Award in 1972

•  Contributions
–  Shortest Path Algorithm, Reverse Polish Notation,

Bankers algorithm, semaphore’s, self-stabilization

•  Known for disliking ‘goto’ statements and using
computers!

“THE”-Multiprogramming System
Edsger W. Dijkstra

•  Never named “THE” system; instead, abbreviation
for "Technische Hogeschool Eindhoven”

•  Batch system (no human intervention) that
supported multitasking (processes share CPU)
–  THE was not multiuser

•  Introduced
–  software-based memory segmentation
–  Cooperating sequential processes
–  semaphores

Design

•  Layered structure
–  Later Multics has layered structure, ring segmentation

•  Layer 0 – the scheduler
–  Allocated CPU to processes, accounted for blocked proc’s

•  Layer 1 – the pager
•  Layer 2 – communication between OS and console
•  Layer 3 – managed I/O
•  Layer 4 – user programs
•  Layer 5 – the user

Perspective

•  Layered approach
–  Design small, well defined layers
–  Higher layers dependent on lower ones

•  Helps prove correctness
•  Helps with debugging

•  Sequential process and Semaphores

Next Time

•  Read and write review:
–  SEDA: An Architecture for Well Conditioned, Scalable

Internet Services, Matt Welsch, David Culler, and Eric
Brewer. Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (Banff,
Alberta, Canada, 2001), pages 230--243

–  On the duality of operating system structures, H. C.
Lauer and R. M. Needham. ACM SIGOPS Operating
Systems Review Volume 12, Issue 2 (April 1979),
pages 3--19.

Next Time

•  Read and write review:

•  Lab 0 – finish today
•  Lab 1 – available later today and due next Friday

•  Project Proposal due in two weeks
–  Possible projects presentations Tuesday night, syslab
–  Also, talk to faculty and email and talk to me

•  Check website for updated schedule

