
System Design

Presented by Hakim Weatherspoon

System design

•  complex act
•  less precisely defined, changing requirements

•  Choices
–  Affects future choices
–  Affects system-wide performance

•  But how? Hard to predict during design phase

End-to-End arguments in System Design
– Jerry H. Saltzer, David P. Reed, David D. Clark

•  Background of authors at MIT

•  Jerry H. Saltzer
–  A leader of Multics, key developer of the Internet, and a

LAN (local area network) ring topology, project Athena

•  David P. Reed
–  Early development of TCP/IP, designer of UDP

•  David D. Clark
–  I/O of Multics, Protocol architect of Internet

“We reject: kings, presidents and voting.
We believe in: rough consensus and running code.”

End-to-End arguments in System Design
– Jerry H. Saltzer, David P. Reed, David D. Clark

•  Helps guide function placement among modules of a
distributed system

•  Argument
–  can the higher layer implement the functionality it needs?

•  if yes - implement it there, the app knows it's needs best

–  implement the functionality in the lower layer only if
•  A) a large number of higher layers / applications use this

functionality and implementing it at the lower layer
improves the performance of many of them AND

•  B) does not hurt the remaining applications

Example : File Transfer (A to B)

A B

1.  Read File Data blocks
2.  App buffers File Data
3.  Pass (copy) data to the
network subsystem

4. Pass msg/packet down
the protocol stack

5. Send the packet over the
network

6. Route packet

Example : File Transfer

A B
7. Receive packet and

buffer msg.
8. Send data to the

application

9. Store file data blocks

Possible failures

•  Reading and writing to disk
•  Transient errors in the memory chip while

buffering and copying
•  network might drop packets, modify bits, deliver

duplicates
•  OS buffer overflow at the sender or the receiver
•  Either of the hosts may crash

Solutions?
•  Make the network reliable

–  Packet checksums, sequence numbers, retry, duplicate
elimination

–  Solves only the network problem.
–  What about the other problems listed?
–  War story: Byte swapping problem while routing @ MIT

•  Not sufficient and not necessary

Solutions?
•  Introduce file checksums and verify once transfer

completes – end-to-end check.
–  On failure – retransmit file.

Solutions? (cont.)

•  network level reliability would improve performance.
–  But this may not benefit all applications

•  Huge overhead for say Real-Time speech transmission
•  Need for optional layers

•  Checksum parts of the file.

Formally stated
"The function in question can completely and

correctly be implemented only with the
knowledge and help of the application standing
at the end points of the communication system.
Therefore, providing that questioned function as
a feature of the communication system itself is
not possible. (Sometimes an incomplete version
of the function provided by the communication
system may be useful as a performance
enhancement.)"

Other end-to-end requirements
•  Delivery guarantees

–  Application level ACKs
•  Deliver only if action guaranteed
•  2 phase commit
•  NACKs

•  End-to-end authentication

•  Duplicate msg suppression
–  Application level retry results in new n/w level packet

TCP/IP

•  Internet Protocol
–  IP is a simple ("dumb"), stateless protocol that moves

datagrams across the network, and
•  Transmission Control Protocol

–  TCP is end-to-end.
–  It is a smart transport protocol providing error

detection, retransmission, congestion control, and
flow control end-to-end.

•  The network
–  The network itself (the routers) needs only to support

the simple, lightweight IP; the endpoints run the
heavier TCP on top of it when needed.

Is argument complete?

•  E.g. congestion control
–  TCP leaves it to the ends

•  Should the network trust the ends?
–  RED

•  In a wireless setting
–  packet loss != congestion

•  performance problems may appear in end-end systems
under heavy load

•  Performance enhancing Proxies

Cornell NLR Rings testbed

λ-network endpoints by
Hakim Weatherspoon

7/30/2009 15

Cornell NLR Rings testbed

λ-network endpoints by
Hakim Weatherspoon

7/30/2009 16

Cornell NLR Rings testbed

λ-network endpoints by
Hakim Weatherspoon

7/30/2009 17

Hints for Computer System Design -
Butler Lampson
•  Related to end-to-end argument—guidance

for developer

•  But a collection of experience and wisdom
–  Use a hints

Butler Lampson - Background
•  Founding member of Xerox PARC (1970), DEC (1980s),

MSR (current)
•  ACM Turing Award (1992)

•  Laser printer design
•  PC (Alto is considered first actual personal computer)
•  Two-phase commit protocols
•  Bravo, the first WYSIWYG text formatting program
•  Ethernet, the first high-speed local area network (LAN)

Some Projects & Collaborators
•  Charles Simonyi - Bravo: WYSIWYG editor (MS Office)

•  Bob Sproull - Alto operating system, Dover: laser printer,
Interpress: page description language (VP Sun/Oracle)

•  Mel Pirtle - 940 project, Berkeley Computer Corp.

•  Peter Deutsch - 940 operating system, QSPL: system
programming language (founder of Ghostscript)

•  Chuck Geschke, Jim Mitchell, Ed Satterthwaite - Mesa:
system programming language

Some Projects & Collaborators
(cont.)

•  Roy Levin - Wildflower: Star workstation prototype,
Vesta: software configuration

•  Andrew Birrell, Roger Needham, Mike Schroeder -
Global name service and authentication

•  Eric Schmidt - System models: software configuration
 (CEO/Chairman of Google)

•  Rod Burstall - Pebble: polymorphic typed language

Hints for Computer System Design -
Butler Lampson

Functionality

•  Interface – Contract
–  separates implementation from client using

abstraction
–  Eg: File (open, read, write, close)

•  Desirable properties
–  Simple
–  Complete
–  Admit small and fast impl.

Simplicity

•  Interfaces
–  Avoid generalizations

•  too much = large, slow and complicated impl.
•  Can penalize normal operations

–  PL/1 generic operations across data types

–  Should have predictable (reasonable) cost.
•  eg: FindIthField [O(n)], FindNamedfield [O(n^2)]

–  Avoid features needed by only a few clients

Functionality Vs Assurance

 As a system performs more (complex
interface) assurance decreases.

Example
•  Tenex System

–  reference to an unassigned page -> trap to user program
–  arguments to sys calls passed by reference
–  CONNECT(string passwd) -> if passwd wrong, fails after a

3 second delay

–  CONNECT
for i := 0 to Length(directoryPassword) do

 if directoryPassword[i] != passwordArgument[i] then
 Wait three seconds; return BadPassword
 end if

end loop;
connect to directory; return Success

Breaking CONNECT(string passwd)

Unassigned
Page

Assigned
Page

A

Bad Passwd

B

Invalid page

Breaking CONNECT(string passwd)

Unassigned
Page

Assigned
Page

B A

Bad Passwd

Z

Invalid page

Worst case

128*n tries
as opposed
to 128^n
tries

n = passwd
length
(bytes)

Functionality (cont.)
•  basic (fast) operations rather than generic/powerful

(slow) ones
–  Pay for what you want
–  RISC Vs CISC
–  Unix Pipe

•  grep –i 'spock' * | awk -F: '{print $1}' | sort | uniq | wc –l

•  Use timing tools (80% of the time in 20% of code)
–  Avoid premature optimization

•  May be useless and/or expensive
–  analyze usage and optimize heavily used I/Fs

•  Avoid abstracting-out desirable properties
–  “don't hide power”
–  Eg: Feedback for page replacement
–  How easy is it to identify desirable properties?

•  Procedure arguments
–  filter procedure instead of a complex language with

patterns.
•  static analysis for optimization - DB query lang

–  failure handlers
–  trust?

Continuity

•  Interfaces
–  Changes should be infrequent

•  Compatibility issues

–  Backward compatibility on change

•  Implementation
–  Refactor to achieve “satisfactory” (small, fast,

maintainable) results
–  Use prototyping

Implementation
•  Keep secrets

–  Impl. can change without changing contract
–  Client could break if it uses Impl. details
–  But secrets can be used to improve performance

•  finding the balance an art?

•  Divide and conquer
•  Reuse a good idea in different settings

–  global replication using a transactional model
•  local replication for reliably storing transactional logs.

Completeness - handling all
cases

•  Handle normal and worst case separately
–  normal case – speed, worst case – progress
–  Examples

•  caches
•  incremental GC

–  trace-and-sweep (unreachable circular structures)
•  piece-table in the Bravo editor

–  Compaction either at fixed intervals or on heavy fragmentation
–  “emergency supply” helps in worst-case scenarios

Speed

•  Split resources in a fixed way
–  rather than share and multiplex
–  faster access, predictable allocation
–  Safety instead of optimality

•  over-provisioning ok, due to cheap hardware

•  Use static analysis where possible
–  dynamic analysis as a fallback option
–  Eg: sequential storage and pre-fetching based on

prior knowledge of how data is accessed

Speed (cont.)

•  Cache answers to expensive computations
–  x, f => f(x)
–  f is functional.

•  Use hints!
–  may not reflect the "truth" and so should have a quick

correctness check.
–  Routing tables
–  Ethernet (CSMA/CD)

Speed (cont.)
•  Brute force when in doubt

–  Prototype and test performance
–  Eg: linear search over a small search space
–  Beware of scalability!

•  Background processing (interactive settings)
–  GC
–  writing out dirty pages, preparing pages for replacement.

•  Shed load
–  Random Early Detection
–  Bob Morris' red button

Fault Tolerance
•  End-to-end argument

–  Error recovery at the app level essential
–  Eg: File transfer

•  Log updates
–  Replay logs to recover from a crash
–  form 1: log <name of update proc, arguments>

•  update proc must be functional
•  arguments must be values

–  form 2: log state changes.
•  idempotent (x = 10, instead of x++)

•  Make actions atomic
–  Aries algorithm - Atomicity and Durability

Conclusions

•  Remember these are “hints” from a Guru
•  Reuse good ideas, but not blindly.

•  Your experiences

Next Time

•  Read and write review:
–  The UNIX time-sharing system, Dennis M. Ritchie and

Ken Thompson. Communications of the ACM Volume
17, Issue 7, July 1974, pages 365 -- 375

–  The structure of the "THE"-multiprogramming system,
E.W. Dijkstra. Communications of the ACM Volume
11, Issue 5, May 1968, pages 341--346

•  Do Lab 0

•  Check website for updated schedule

