
Game Theory

Presented by Hakim Weatherspoon

Game Theory

•  BitTorrent
•  Do Incentives Build Robustness in BitTorrent?
•  BAR Gossip

BitTorrent

•  Written by Bram Cohen (in Python) in 2001
•  “Pull-based” “swarming” approach

–  Each file split into smaller pieces
–  Nodes request desired pieces from neighbors

•  As opposed to parents pushing data that they receive

–  Pieces not downloaded in sequential order
–  Previous multicast schemes aimed to support

“streaming”; BitTorrent does not
•  Encourages contribution by all nodes

BitTorrent slides from CS 5410, Ken Birman

BitTorrent Swarm

•  Swarm
–  Set of peers all downloading the same file
–  Organized as a random mesh

•  Each node knows list of pieces downloaded by
neighbors

•  Node requests pieces it does not own from
neighbors
–  Exact method explained later

How a node enters a swarm
 for file “popeye.mp4”

•  File popeye.mp4.torrent
hosted at a (well-known)
webserver

•  The .torrent has address
of tracker for file

•  The tracker, which runs
on a webserver as well,
keeps track of all peers
downloading file

How a node enters a swarm
 for file “popeye.mp4”

•  File popeye.mp4.torrent
hosted at a (well-known)
webserver

•  The .torrent has address
of tracker for file

•  The tracker, which runs
on a webserver as well,
keeps track of all peers
downloading file

www.bittorrent.com

Peer

1

popeye.mp4.torrent

How a node enters a swarm
 for file “popeye.mp4”

•  File popeye.mp4.torrent
hosted at a (well-known)
webserver

•  The .torrent has address
of tracker for file

•  The tracker, which runs
on a webserver as well,
keeps track of all peers
downloading file

Peer

Tracker
Addresses of peers

2

www.bittorrent.com

How a node enters a swarm
 for file “popeye.mp4”

•  File popeye.mp4.torrent
hosted at a (well-known)
webserver

•  The .torrent has address
of tracker for file

•  The tracker, which runs
on a webserver as well,
keeps track of all peers
downloading file

Peer

Tracker 3

www.bittorrent.com

Swarm

Contents of .torrent file

•  URL of tracker
•  Piece length – Usually 256 KB
•  SHA-1 hashes of each piece in file

–  For reliability

•  “files” – allows download of multiple files

Terminology

•  Seed: peer with the entire file
–  Original Seed: The first seed

•  Leech: peer that’s downloading the file
–  Fairer term might have been “downloader”

•  Sub-piece: Further subdivision of a piece
–  The “unit for requests” is a subpiece
–  But a peer uploads only after assembling complete

piece

Peer-peer transactions:
Choosing pieces to request

•  Rarest-first: Look at all pieces at all peers, and
request piece that’s owned by fewest peers
–  Increases diversity in the pieces downloaded

•  avoids case where a node and each of its peers have exactly
the same pieces; increases throughput

–  Increases likelihood all pieces still available even if
original seed leaves before any one node has
downloaded entire file

Choosing pieces to request

•  Random First Piece:
–  When peer starts to download, request random piece.

•  So as to assemble first complete piece quickly
•  Then participate in uploads

–  When first complete piece assembled, switch to
rarest-first

Choosing pieces to request

•  End-game mode:
–  When requests sent for all sub-pieces, (re)send

requests to all peers.
–  To speed up completion of download
–  Cancel request for downloaded sub-pieces

Tit-for-tat as incentive to upload

•  Want to encourage all peers to contribute
•  Peer A said to choke peer B if it (A) decides not

to upload to B
•  Each peer (say A) unchokes at most 4 interested

peers at any time
–  The three with the largest upload rates to A

•  Where the tit-for-tat comes in

–  Another randomly chosen (Optimistic Unchoke)
•  To periodically look for better choices

Anti-snubbing

•  A peer is said to be snubbed if each of its peers
chokes it

•  To handle this, snubbed peer stops uploading to
its peers

 Optimistic unchoking done more often
–  Hope is that will discover a new peer that will upload

to us

Why BitTorrent took off
•  Better performance through “pull-based” transfer

–  Slow nodes don’t bog down other nodes
•  Allows uploading from hosts that have

downloaded parts of a file
–  In common with other end-host based multicast

schemes

Why BitTorrent took off

•  Practical Reasons (perhaps more important!)
–  Working implementation (Bram Cohen) with simple

well-defined interfaces for plugging in new content
–  Many recent competitors got sued / shut down

•  Napster, Kazaa
–  Doesn’t do “search” per se. Users use well-known,

trusted sources to locate content
•  Avoids the pollution problem, where garbage is passed off as

authentic content

Pros and cons of BitTorrent

•  Pros
–  Proficient in utilizing partially downloaded files
–  Discourages “freeloading”

•  By rewarding fastest uploaders

–  Encourages diversity through “rarest-first”
•  Extends lifetime of swarm

•  Works well for “hot content”

Pros and cons of BitTorrent

•  Cons
–  Assumes all interested peers active at same time;

performance deteriorates if swarm “cools off”
–  Even worse: no trackers for obscure content

•  Recent studies by team at U. Washington found
that many swarms “fail” because there are few
changes for repeated interaction with the same
peer
–  They suggest fixes, such as “one hop reputation” idea

presented at NSDI 2008

Pros and cons of BitTorrent

•  Dependence on centralized tracker: pro/con?
–  Single point of failure: New nodes can’t enter

swarm if tracker goes down
–  Lack of a search feature

•  Prevents pollution attacks
•  Users need to resort to out-of-band search: well known

torrent-hosting sites / plain old web-search

Do Incentives Build
Robustness in BitTorrent?

 Michael Piatek, Tomas Isdal, Thomas Anderson,
Arvind Krishnamurthy, and Arun Venkataramani

U. Of Washington and U. of Massachusetts, Amherst

BitTorrent

•  BitTorrent is a protocol for bulk data transfer
•  The more you give, the more you get
•  Tit-for-tat

–  Not really

Altruism

•  Not really TFT
–  80% of users get more than they give
–  70% of capacity comes from high capacity users
–  Not really a fair protocol

•  Operates based on altruism of high capacity users

Exploiting Altruism

•  Selfish users
–  Rational
–  Want to cheat (as long as they won’t get caught!)
–  Can download with many low-speed connections

rather than 1 high-speed

BitTyrant

•  Maximize reciprocation bandwidth per
connection
–  Find peers that give the most for the least

•  Maximize number of reciprocating peers
–  Get as many peers as possible
–  Until benefit of new peer is outweighed by cost of

reduced reciprocation from other peers
•  Deviate from equal

–  Decrease uploading on each connection
–  Until peer stops reciprocating

Results

•  BitTyrant improves average download
performance by 70%

•  Regardless of capacity, using BitTyrant is in the
selfish interest of every peer individually

•  When all peers behave selfishly, average
performance degrades for all peers, even those
with high capacity

Take-away
•  BitTorrent works because people use the default

client
–  No cheating

•  BitTyrant is now available in the wild
–  This is a test – Do incentives build robustness?
–  Maybe users will continue to donate excess

bandwidth
–  Maybe users will be selfish

•  Proven to reduce overall capacity

BAR Gossip

Henry Li, Allen Clement, Edmund
Wong, Jeff Napper, Indrajit Roy,

Lorenzo Alvisi, and Michael Dahlin

BAR Model

•  Byzantine (Arbitrary) Nodes
•  Altruistic (Generous) Nodes
•  Rational (Selfish) Nodes

BAR Gossip Vision

•  In presence of:
–  Selfish nodes
–  Byzantine nodes

•  We want:
–  Predictable throughput
–  Low latency

BAR Gossip Differences

•  Data exchange in short periods
•  No long-term reputation
•  Exchanges small blocks of data
•  Robust to both Selfish and Byzantine behavior

BAR Gossip Assumptions

•  One data broadcaster
•  Static Membership
•  Reliable Cryptographic primitives (SHA1,RSA)
•  Unique keys and signatures for nodes

Overview

Core Idea

•  Balanced Exchange
–  When a peer gives some data in exchange of some

data. “Trade data for data.“

•  Optimistic Push
–  Every peer will willingly help others by giving them

data for free. Be a good person and give data for free.

•  What about when I don’t have anything to trade
off with, am I out of the game then ?

Take-away

•  Current gossip protocols are ill-suited for selfish
environments.

•  Bar Gossip
–  Verifiable pseudo-randomness
–  Signatures
–  Balanced Exchange, achieves 98% reliability.
–  With Optimistic Push, increases to almost 99.9%

Next Time

•  Final Presentations
–  Room 5130
–  8am – 3:30pm, Thursday, December 3rd
–  15 minute presentations, 5 minute questions
–  Signup for presentation slot

•  Final paper
–  Due next Thursday, December 10th
–  Complete paper and comprehensive evaluation

•  Thank you!

