

Replication

Hari Shreedharan

Papers!
● Implementing Fault-Tolerant Services using the

State Machine Approach (Dec, 1990)

Fred B. Schneider
 Cornell University.

Who introduced it?

● Most people confused about who introduced
the “State Machine Approach.”

● Introduced by Leslie Lamport in the seminal
“Time, Clocks and Ordering of events in
distributed systems.”

Whose idea?

● Lamport says on his page, about that paper: “This is my
most often cited paper. Many computer scientists claim to
have read it. But I have rarely encountered anyone who was
aware that the paper said anything about state machines.
People seem to think that it is about either the causality
relation on events in a distributed system, or the distributed
mutual exclusion problem. People have insisted that there is
nothing about state machines in the paper. I've even had to
go back and reread it to convince myself that I really did
remember what I had written.”

● So Lamport introduced it, Schneider surveyed it :)

Outline

● State machines
● Faults
● State Machine Replication
● Failures Outside the state machines
● Other considerations
● Chain Replication

State Machines

● State variables
● Deterministic Commands

J = 1
K = 3

J = 2
K = 4

 memory : state_machine
var store : array [0 . . n] of word

read : command(loc : 0 . . n)
send store[loc] to client
end read;

write : command(loc : 0 . . n, value :
word)

store[loc] := value
end write;

end memory

Increment

J = 3
K = 5

Increment

Minus 2

State

Command

Requests and Causality!

● Commands processed in potentially causal
order.

You're fired!

You can't
fire Thirteen! House just fired me :(

Oh yes,
I can..I just did

Causal Ordering is important!

More formally...

● O1 : Requests from a single client processed
in the order it is made.

● O2 : If request r by client c was made
because a request r' from client c' caused it
to, then r' is processed before r.

● We have seen this before :)

State machines and computer
programs?

● How to implement SM's as programs?
● State machine implemented as procedures
● Client calls the procedure.

Outline

● State machines
● Faults
● State Machine Replication
● Failures Outside the state machines
● Other considerations
● Chain Replication

Faults

● Byzantine Failures :
– Arbitrary
– Malicious behavior by faulty components.
– Weakest possible failure assumption.

● Fail-stop failures: The good guys
– Failure by stopping.

Failures...
Face it, join my team!

I killed a patient!

This is too much, I quit!!

Byzantine

Fail-stop

Tolerating faults

● “t-fault tolerant”
– < t components become faulty
– Makes failure assumption very explicit.

● Parameters such as MTBF.
– More of a statistical measure
– Not measuring degree of fault-tolerance.

Outline

● State machines
● Faults
● State Machine Replication
● Failures Outside the state machines
● Other considerations
● Chain Replication

Fault Tolerant State Machines

● Implement the state machine on multiple
processors.

● State Machine Replication
– Each starts in the same initial state
– Executes the same requests
– In the same order
– Being deterministic, each will do the exact

same thing
– Produce the same output.

Really?

Headache,
fever

Headache,
fever

So now you
need a baby-sitter?

So now you
need a baby-sitter?

Like one House wasn't enough!

What all do we need?

● Replicas need to be coordinated
● Replica coordination:

– Agreement:
● Every non-faulty replica receives every request.

– Order:
● Every non-faulty replica processes the requests

in the same relative order.

Agreement and Ordering

Not AI..
Lymphoma

Agreement

Ordering

Auto-immune

Outline

● State machines
● Faults
● State Machine Replication

– Agreement
– Ordering

● Failures Outside the state machines
● Other considerations
● Chain Replication

Agreement

● “The transmitter” disseminates a value, then:
– IC1: All non-faulty processors agree on the

same value
– IC2: If transmitter is non-faulty, agree on its

value.
● Client can

– be the transmitter
– send request to one replica, who is transmitter

Outline

● State machines
● Faults
● State Machine Replication

– Agreement
– Ordering

● Failures Outside the state machines
● Other considerations
● Chain Replication

Ordering

● Unique identifier, uid on each request
● Total ordering on uid.
● Request, r is stable if

– Cannot receive request with uid(r') < uid(r)
● Process a request once it is stable.
● Logical clocks can be the basis for unique id.
● Stability tests for logical clocks?

Ordering

● Can use synchronized real-time clocks.
● Max one request at every tick.
● If clocks synchronized within δ,

– Message delay > δ
● Stability tests?

More Ordering...

● Can the replicas generate uid's?
● Of course!
● Consensus is the key!
● State machines propose candidate id's.
● One of these selected, becomes unique id.

Constraints
● UID1: cuid(sm

i
,r) <= uid(r).

● UID2: If a request r' is seen by sm
i
 after r has

been accepted by sm
i
, then uid(r') <

cuid(sm
i
,r').

● Stability test?
● Potential Problems?

– Could affect causality of requests
– Client does not communicate until

request is accepted.

How to generate uid's?

● Requirements:
– UID1 and UID2 be satisfied
– r != r' uid(r) != uid(r')
– Every request seen is eventually accepted.

● Define:
– SEEN(i) = largest cuid(sm

i
,r) assigned to any

request so far seen at sm
i

– ACCEPT(i) = largest cuid(sm
i
,r) assigned to any

request so far accepted by sm
i

Generating uid's....

● cuid(sm
i
,r) = max (

└
SEEN(i)

┘
,
└
ACCEPT(i)

┘
) + 1 + i/N.

● uid(r) = max (cuid(sm
i
,r))

● Proof is simple.

Outline

● State machines
● Faults
● State Machine Replication
● Failures Outside the state machines
● Other considerations
● Chain Replication

Tolerating failures

● Failed output device or voter:
– Replicate?
– Use physical properties to tolerate failures,

like the flaps example in the paper.
– Add enough redundancy in fail-stop systems

● Client Failure
– Use properties of the system

Outline

● State machines
● Faults
● State Machine Replication
● Failures Outside the state machines
● Other considerations
● Chain Replication

Reconfiguration

● Would removing failed systems help us
tolerate more faults?

● Yes, it seems!
● P(t) = total processor at time t
● F(t) = Failed Processors at time t
● Assume Combining function, P(t) - F(t)
● Enuf = P(t)/2 for byzantine failures
● Enuf = 0 for fail-stop.

Reconfiguration

● F1: If Byzantine failures, then faulty machines
are removed from the system before
combining function is violated.

● F2: In any case, repaired processors are
added before combining function is violated.

● Might actually improve system performance.
● Fewer messages, faster consensus.

Integrating repaired objects

● Element must be non-faulty and must have the
current state before it can proceed.

● If it is a replica, and failure is fail-stop:
– Receive a checkpoint/state from another replica.
– Forward messages, until it gets the ordered

messages from client.

Outline

● State machines
● Faults
● State Machine Replication
● Failures Outside the state machines
● Other considerations
● Chain Replication

Papers!

● Chain Replication for supporting high
throughput and availability

Robert van Renesse
FAST Search & Transfer ASA
Cornell University

Fred B. Schneider
Cornell University

Storage Systems

● Store objects.
● Query existing objects.
● Update existing objects.
● Usually offers strong consistency guarantees.
● Request processed based on some order.
● Effect of updates reflected in subsequent

queries.

Primary-Backup

● Different from State Machine Replication?
● Serial version of State Machine Replication
● Only the primary does the processing
● Updates sent to the backups.

Test for
Lymphoma
positive

Steroids?

Chain Replication Assumes:

● No partition tolerance.
● Chain replication: Consistency, availability.
● A partitioned server == failed server.
● High Throughput.
● Fail-stop processors.
● A universally accessible, failure resistant or

replicated Master, which can detect failures.

Chain Replication

Head Tail

Did you ask
Cuddy out?

Test for
Lymphoma
positive

Give him
steriods

Give him
steriods

okok

Give him
steriods

I'd rather take
an algorithms class.

Updates come to head
Queries come to tail

Details....

● Client requests arrive at chain:
– Either at head(updates) or tail(queries).

● Request processed by tail:
– Execution of the request :modify state.
– Send back ACK to predecessor.
– Update state, send ACK to its predecessor...

● Request processed by head :
– Updates are propagated down the chain.

Handling failures

● Failures are detected by God/Master.
● On detecting failure, Master:

– informs its predecessor or successor in the
chain

– informs each node its new neighbors
● Clients ask the master for information

regarding the head and the tail.

Head and Tail failure

● Head failed: Master removes head,makes
successor head.

● Any updates not propagated are assumed lost,
and the client may have to retransmit.

● Master removes the failed processor
● Makes the predecessor the new tail.
● Since the old tail's state is a subset of the

current tail, it is easy to handle the failure of
the tail.

Failure of other servers

● Master removes that server from the chain.
● Master informs its predecessor of its new

successor.
● This server now transfers all un-ACKed

requests to the successor.
● Successor sends ACKs based on which

requests have been ACK-ed by its
successor.

Adding a new replica

● Current tail, T notified it is no longer the tail.
● State, Un-ACK-ed requests now transmitted

to the new tail.
● Master notified of the new tail.
● Clients notified of new tail.

Unavailability
● Head failure:

– Query processing uninterrupted,
– update processing unavailable till new head

takes on responsibility.
● Middle failure:

– Query processing uninterrupted,
– update processing might be delayed.

● Tail failure:
– Query and update processing unavailable,

until new tail takes over.

Conclusions

● State Machine Replication probably would
have less service interruption, but at a high
cost, and usually more complex to
implement.

● Primary-Backup easier to implement,
reasonably high throughput and no need of
consensus, so might be more efficient even
in terms of network usage, but at the cost of
lower availability.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

