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What is consensus?

É Assume a collection of processes that can propose
values. A consensus algorithm ensures that a single
one among the proposed values is chosen . . . We
won’t try to specify precise liveness requirements.

É The consensus problem involves an asynchronous
system of processes, some of which may be
unreliable. The problem is for the reliable processes
to agree on a binary value . . . every protocol for this
problem has the possibility of nontermination . . .



What is consensus?

É Only a proposed value may be chosen.
É Only one, unique value may be chosen.
É All correct processes must eventually choose that

value.
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Paxos

É The Part-Time Parliament (1998)

Recent archaeological discoveries on the island
of Paxos reveal that the parliament functioned
despite the peripatetic propensity of its
part-time legislators. The legislators maintained
consistent copies of the parliamentary record,
despite their frequent forays from the chamber
and the forgetfulness of their messengers. The
Paxon parliament’s protocol provides a new
way of implementing the state machine
approach to the design of distributed systems.

É Paxos Made Simple (2001)
The Paxos algorithm, when presented in plain
English, is very simple.
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Asynchronous network

Processes can fail or restart
Messages can be
É lost
É duplicated
É reordered
É held arbitrarily long
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Any process might fail

There must be multiple acceptors.



Only choose a single value

A majority of acceptors must agree on the choice.



Property 1

An acceptor must accept the first proposal it receives.



Wait—what?

Majority-must-agree + Must-accept-first =
Acceptors must be able to accept multiple proposals

É Number all proposals uniquely to distinguish them
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Property 2

If a proposal with value v is chosen, then every
higher-numbered proposal that is chosen
has value v.



Property 2a

If a proposal with value v is chosen, then every
higher-numbered proposal accepted by any acceptor
has value v.



Property 2b

If a proposal with value v is chosen, then every
higher-numbered proposal issued by any proposer
has value v.



Property 2c

For any v and n, if a proposal with value v and number
n is issued, then there is a set S consisting of a majority
of acceptors such that either

É no acceptor in S has accepted any proposal
numbered less than n, or

É v is the value of the highest-numbered proposal
among all proposals numbered less than n
accepted by the acceptors in S.



Proposers



Proposers

Proposers



Prepare requests

Instead of predicting the future
É Proposer sends prepare n to acceptors
É Each acceptor replies with

É A promise to reject lower proposals in future
É If any, the highest accepted lower proposal



Accept request

É If a majority promise
É Proposer sends propose n, v

É If there were accepted proposals
É v must match the highest one

(Otherwise, v can be arbitrary.)



Acceptors

Acceptors



Property 1a

An acceptor can accept a proposal numbered n iff it has
not responded to a prepare request having a number
greater than n.



Responding to prepare requests

É An acceptors may respond to any prepare request
É To optimize, ignore requests lower than promised



Learners

Learners



Learners

LearnersBroadcast choices



Learners

LearnersBroadcast choices

Choose majority



Distinguished learner (optimization)



Progress

1. P1 receives promises for n1

2. P2 receives promises for n2 > n1

3. P1 sends proposal numbered n1, rejected
4. P1 receives promises for n′1 > n2

5. P2 sends proposal numbered n2, rejected
6. P1 receives promises for n′2 > n′1
7. P1 sends proposal numbered n′1, rejected
8. ad infinitum. . .
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Impossibility

É Impossibility of Distributed Consensus with One
Faulty Process (1983)

The consensus problem involves an
asynchronous system of processes, some of
which may be unreliable. The problem is for the
reliable processes to agree on a binary value. In
this paper, it is shown that every protocol
for this problem has the possibility
of nontermination, even with only one
faulty process. By way of contrast, solutions are
known for the synchronous case, the
“Byzantine Generals” problem.
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System

Processes

Message buffer

Delivering a message is one step



System

Processes

Message buffer

The actual message and transition define the event



System

Processes

Message buffer

The state of each process and the buffer is a configuration



More terminology

É Schedule: Finite or infinite sequence of events δ
that can be applied from configuration C

É Reachable: The result of any δ(C) is reachable
from C

É Accessible: Reachable from the initial
configuration

É Run: Sequence of steps associated with a schedule
É Deciding Run: Run in which some process decides
É Bivalent configuration: Can still decide either

value
É Univalent configuration: Can only decide a

particular value



Partially correct

Encapsulates requirements for a consensus algorithm
É No accessible configuration has more than one

decision value (correctness)
É For each v ∈ {0,1} some accessible configuration

has decision value v (non-triviality)



Admissible run

Encapsulates our assumptions about the system
É At most one process is faulty
É All messages sent to nonfaulty processes are

eventually received



Totally correct in spite of one fault

É Partially correct (consensus)
É Every admissible run is a deciding run

(every possible run will eventually decide,
i.e. terminate)



Theorem

No consensus protocol is totally correct in spite of one
fault (i.e. for any correct consensus algorithm, under
our system assumptions, at least one conceivable run
will never terminate)



Lemma 1

Roughly, schedules are commutative



Lemma 2

There is a bivalent initial configuration



Lemma 3

Let C be a bivalent configuration of P, and let e = (p,m)
be an event that is applicable to C. Let C be the set of
configurations reachable from C without applying e, and
let D = e(C). Then, D contains a bivalent configuration.



An admissible run

É Order processes arbitrarily in a queue
É Order message buffer earliest to latest
É Divide into stages, each stage ending when head of

queue processes its first message and gets moved
to back of queue



A non-deciding admissible run

É Begin in a bivalent initial configuration (Lemma 2)
É Schedule messages within stage to guarantee

ending in a bivalent configuration (Lemma 3)



Conclusions

É Consensus is impossible.
É But you can do it.
É Paxos works well in practice and is very famous.
É Other systems exist that make different system

assumptions, terminate with probability 1, . . .


