Time

Supriya Vadlamani

Asynchrony v/s Synchrony

e Last class:
— Asynchrony

* Event based
* Lamport’s Logical clocks
* Today:
— Synchrony

e Use real world clocks
e But do all the clocks show the same time?

Problem Statement

“The only reason for time is so that
everything doesn't happen at once.” —
Albert Einstein

Given a collection of processes that can. ..
— Only communicate with significant latency

— Only measure time intervals approximately

— Fail in various ways

We want to construct a shared notion of time.

Why is The Problem Hard?

e Variation of transmission delays

— Each process cannot have an instantaneous global
view

e Presence of drift in clocks.

e Support faulty elements Hardest !

Applications that Require
Synchronization

* Transaction processing applications
* Process control applications
 Communication protocols

— require approximately the same view of time

Approaches to Clock Synchronization

e Hardware vs Software clocks

* External vs Internal Clock synchronization

Hardware Clocks

* Each processor has an oscillator
 BUT- oscillators drift!

glg clock A wleal clock

Logical Clock =
H/w clock + Adjustment Factor clock B

ume

1. Deterministic 2 assumes an upper bound
on transmission delays — guarantees some

precision Realistic ?

2. Statistical 2 expectation and standard
deviation of the delay distributions are
known Reliable ?

3. Probabilistic 2 no assumptions about delay
distributions Any Guarantees ?

Clock Synchronization

External Clock Internal Clock
Synchronization Synchronization

Synchronize clocks with
respect to an external time
reference

Example: NTP

Synchronize clocks among
themselves

Optimal Clock Synchronization [Srikanth and
Toueg '87]

— Assume reliable network (deterministic)

— Internal clock synchronization

— Also optimal with respect to failures

Authors:

Sam Toueg — Cornell University
-Moved to MIT
T K Srikanth- Cornell University

Types of Failures in a Network

* Up to f processes can fail in the following
ways:
— Crash Failure:

* processor behaves correctly and then stops executing
forever

— Performance Failure:

* processor reacts too slowly to a trigger event(Eg:Clock
too slow or fast, Stuck clock bits)

— Arbitrary Failure (a.k.a Byzantine):
* processor executes uncontrolled computation

Assumptions:
e Clock drift is bounded

(1-p)(t—s)<Hp(t)—Hp(s) < (1+p)(t—s)
* Communication and processing are reliable

trecv B tsend S tdeI
* Authenticated messages

will relax this later...

* Property 1 Agreement:

Bounded drift btw processes
| LAt)—L,(t) | <6
(6 is the precision of the clock synchronization algorithm)

* Property 2 Accuracy:
Bounded drift within a process
(1-p)t—s)+a < L(t)-Lys) £ (1+p)(t—s)+b

Goals

* Optimal Accuracy

— Drift rate bounded by the maximum drift rate of
correct hardware clocks

p,_P

Synchronization algorithm — authentication
Optimizing for accuracy

Properties

Synchronization algorithm — broadcast
Initialization and Integration

Synchronization Algorithm
(Authenticated Messages)

ky, resynchronization - Waiting for time kP

Ready to
synchronize

/

real time t logical time kP

P —logical time between resynchronizations

Synchronization Algorithm
(Authenticated Messages)

. Ready to
synchronize

/

logical time kP

P —logical time between resynchronizations

Synchronization Algorithm
(Authenticated Messages)

Ready to
synchronize

logical time kP

P —logical time between resynchronizations

Synchronization Algorithm
(Authenticated Messages)

kP + o

Synchronize! \

logical time kP

P —logical time between resynchronizations

Achieving Optimal Accuracy

Uncertainty of t,,

=>» difference in the logical time between
resynchronizations

=>»Reason for non-optimal accuracy

Solution:
Slow down or speed up the logical clocks.
Slow down to kP+a when C,! reads min(T+pB, kP+p)
Speed up to kP+a when C ! reads max(T-B, kP+(3)

Properties Essential to the Algorithm

Unforgeability:
No process broadcasts =2 no correct process accepts by t

Relay:

Correct process accepts message at time t, =2 others do so by time
t + tdel

Correctness:

Round k: f+1 broadcast messages =2 received by t+tdel

* Strong authentication is too heavyweight.
Only need:

— Unforgeability
— Relay
— Correctness

e Can use a broadcast primitive from the
literature.

* Replace sighed communication with a
broadcast primitive
— Primitive relays messages automatically
— Cost of O(n?) messages per resynchronization

* New limit on number of faulty processes
allowed:

—n>3f

Broadcast based Synchronization
Algorithm

Received f+ 1
distinct
(echo, round k)!

Received f+ 1
distinct
(init, round k)!

N2

EB

Received 2f + 1
distinct
(echo, round k)!
Accept (round k)

% —» (echo, round k)

* Deterministic algorithm
— Simple algorithm
— Unified solution for different types of failures
— Achieves “optimal” accuracy
— O(n?) messages

— Bursty communication

* Probabilistic Internal Clock Synchronization
[Cristian and Fetzer ‘03]

— Drop requirements on network (probabilistic)
— Internal Clock synchronization

* Authors

Flaviu Cristian

Christof Fetzer (TU Dresden)
UC San Diego

Deterministic approach ¢ Probabilistic approach

— =» Bound on — =» No upper bound on
transmission delays transmission delays
Require N2 messages * Requires N+1 messages
(best case)
Unified solution for all e (Caters to every kind of
failures failure

Bursty communication e Staggered
communication

* Traditional deterministic fault-tolerant clock
synchronization algorithmes:
— Assume bounded communication delays

— Require the transmission of at least N2
messages each time N clocks are synchronized

— Bursty exchange of messages within a narrow
re-synchronization real-time interval

System Model

e Correct clocks still have bounded drift

* No longer a maximum communication delay
— delays given by probability distribution

* There is a known minimum message delay t

min

Probabilistic Clock Reading, (2 processors)
Optimizing probabilistic clock reading
Round Message exchange protocol

Failure algorithm classes

Contents of Exchanged Messages

Message (p->q)

Send time
Estimation of all clocks
Error bounds

Receive time stamps of q

If q trusts p can also use it to approximate other clocks.

Probabilistic Clock Reading

 Basic ldea:

(T2 mm)gt mo))-wmllbrrzf)gund ealtlme)

C,=T1+ max(m,)(1 + p) + min(m,)(1 - p)

2

Probabilistic Clock Reading

 Basic ldea:

No? Try reading again

Maximum
< ?
Iserror < A" acceptable clock
Yes: Success :
., reading error

(Limit: D)

/

* Use all potentially non-concurrent messages

— Helpful to approximate the sender’s/receiver’s
clocks

» Stagger the messages

— Increases no. of non concurrent messages,
reduces n/w congestion

* Transitive Remote clock reading
— Possible when no arbitrary failures

Staggering Messages

/\ Round
/ Slot ——
| |
P | p— T — T —
“\\ ’I ! ‘:\ II :’ ‘\ II
\\\\\ Il h ‘“ l,

Cycle

A slot is a unit in which a single process gets to send
A cycle is a unit in which all processes get a chance to send

A round is a unit in which all processes must get estimates of
other clocks

Round Message Exchange Protocol

Request Mode

finish messages
Reply Mode @

Finish Mode

Clock times:
p q r Clock times:
p
5 q r
i Clock times:
10 11 10
% request messages pa r

10 11 10
% reply messages
1 1 2

Failure Classes

Algo Tolerated Required Tolerated
Failures Processes Failures

CSA Crash Crash
CSA Read F 2F+1 Crash, Reading
CSA Arbit. F 3F+1 Arbit, Reading

CSA Hybrid Fc, Fr, Fa 3Fa+2Fr+Fc+1 Crash, Read, Arb

Probabilistic algorithm

— Takes advantage of the current working
conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

— Precision is not guaranteed
— Achieves “optimal” accuracy
— O(n) messages

If both algorithms achieve optimal accuracy,

Then why is there still work being done?

* Thanks to

— Lakshmi Ganesh
— Michael George

* Papers:

— Optimal Clock Synchronization, Srikanth and Toueg. JACM 34(3), July 1987.

— F. Schneider. Understanding protocols for Byzantine clock synchronization.

Technical Report 87-859, Dept of Computer Science, Cornell University, Aug
1987.

— Using Time Instead of Timeout for Fault-Tolerant Distributed Systems,
Lamport. ACM TOPLAS 6:2, 1974.

— Probabilistic Internal Clock Synchronization, Cristian and Fetzer.

Initialization and Integration

e Same algorithms are used
— A process independently starts clock C°

— On accepting a message at real time ¢, it sets
C'=a

e “Passive” scheme for integration of new processes
— Joining process find out the current round number

— Prevents a joining process from affecting the correct
processes in the system

