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•  Our concept of time 
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•  Coordination of Distributed Systems 
•  Lack of Understanding 
•  Partial Ordering of Events 
•  Total Ordering of Events 
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•  Partial Ordering of Events 
•  Logical Clocks 
•  Total Ordering of Events 
•  Anomalous Behavior 
•  Physical Clocks 
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•  System Definition 
– System contains spatially separated processes 
– Process contains a sequence of events 
– Event manifestation is arbitrary, but must include 

message sending and message receiving 
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•  Mathematical Properties 
– Asymmetric 

•  If a\<b, then b<a 
•  If a\<b and b\<a, then a=b 

– Transitive 
•  If a\<b and b\<c, then a\<c 

– Reflexive 
•  a\<a 
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•  “Happened Before” Relation () 
– Asymmetric:  If ab, then b\a 

•  If a and b are in same process 
–  ab  if a occurs before b 

•  If a and b are in different processes 
–  ab  if a is sending of message and b is receipt of message 

•  If a is concurrent with b 
–  a\b and b\a 

– Transitive:  If ab and bc, then ac 
– Reflexive:  a\a 

Time, Clocks, and the Ordering of Events in a Distributed System 

Partial Ordering of Events 



•  Typical Space-
Time Diagram 
for a Distributed 
System 
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•  Partial Ordering of Events 
•  Logical Clocks 
•  Total Ordering of Events 
•  Anomalous Behavior 
•  Physical Clocks 
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•  Process Clock Ci 
– Clock assigns number to event to represent time 

•  Assigns Ci(a) to each event a within Pi 

•  Belongs to one process Pi 

•  System Clock C 
– Clock C(a) = Ci(a) 
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•  Clock Condition:  If ab, then C(a) < C(b) 
–  If events a and b are in the same process Pi 

•  Ci(a)<Ci(b)  
–  if a occurs before b 

–  If events a and b are in processes Pi and Pj 
•  Ci(a)<Cj(b)  

–  a is the sending of a message 
–  b is the receipt of the message 
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•  Partial Ordering of Events 
•  Logical Clocks 
•  Total Ordering of Events 
•  Anomalous Behavior 
•  Physical Clocks 
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•  Total ordering eliminates concurrency 
•  Identify message with event sending it 
•  Following Example 

– Multiple processes compete for resource 
– Told from point of view of one process Pi 
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•  Process Pi is granted resource 
– Request Tm:Pi 

•  In Pi’s request queue 
•  Time-stamped before other requests in the queue 

– Acknowledge Tm:Pi 
•  Received from Pj 
•  Time-stamped later than Request Tm:Pi 
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•  Step 1:  Pi Sends Request Resource 
– Pi sends Request Tm:Pi to Pj 

– Pi puts Request Tm:Pi on its request queue 
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•  Step 1:  Pi Sends Request Resource 
– Pi sends Request Tm:Pi to Pj 

– Pi puts Request Tm:Pi on its request queue 
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•  Step 2:  Pj Adds Message 
– Pj puts Request Tm:Pi on its request queue 
– Pj sends Acknowledgement Tm:Pj to Pi 
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•  Step 2:  Pj Adds Message 
– Pj puts Request Tm:Pi on its request queue 
– Pj sends Acknowledgement Tm:Pj to Pi 

Time, Clocks, and the Ordering of Events in a Distributed System 

Total Ordering of Events 

P1 

P2 P3 T0:P1 T1:P1 

T1:P1 T0:P1 

ack ack 



•  Step 3:  Pi Sends Release Resource 
– Pi removes Request Tm:Pi from request queue 
– Pi sends Release Tm:Pi to each Pj 
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•  Step 3:  Pi Sends Release Resource 
– Pi removes Request Tm:Pi from request queue 
– Pi sends Release Tm:Pi to each Pj 
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•  Step 4:  Pj Removes Message 
– Pj receives Release Tm:Pi from Pi 

– Pj removes Request Tm:Pi from request queue 
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•  Partial Ordering of Events 
•  Logical Clocks 
•  Total Ordering of Events 
•  Anomalous Behavior 
•  Physical Clocks 
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•  Discrepancy between universe/system 
– Event sets and “happens before” relations 
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Universal 
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System 
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•  Strong Clock Condition 
– For events a and b in system event set S 
–  If ab, Then C(a)<C(b) 
– Attainable via physical clocks 
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•  Partial Ordering of Events 
•  Logical Clocks 
•  Total Ordering of Events 
•  Anomalous Behavior 
•  Physical Clocks 
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•  Physical Clock Ci(t) 
– PC1 

•  к << 1 for all i:  | dCi(t)/dt˗̶̵ 1 | < к 
– PC2 

•  ϵ for all i,j:  | Ci(t)˗̶̵ Cj(t) | < ϵ 
– Also 

•  µ < smallest transmission time 
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•  Prevent anomalous behavior 
– Must ensure that Cj(t) < Ci(t+µ) 
– How small must к and ϵ be?  ϵ/(1- к) < µ 
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•  Partial ordering 
•  Total ordering 
•  Anomalous Behavior 
•  Physical clocks 
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Discussion 



•  Coordination of Distributed Systems 
•  Partial Ordering of Events 
•  Total Ordering of Events 

Time, Clocks, and the Ordering of Events in a Distributed System 

Conclusions 



Distributed Snapshots: 
Determining Global States of 

Distributed Systems 

K. Mani Chandy 
University of Texas at Austin 

Leslie Lamport 
Stanford Research Institute 

Distributed Snapshots:  Determining Global States of Distributed Systems 



Distributed Snapshots:  Determining Global States of Distributed Systems 

K. Mani Chandy 
University of Texas at Austin 

Leslie Lamport 
Stanford Research Institute 

About the Authors 



•  Panoramic dynamic scene  
– Cannot capture with single snapshot 
– Must piece together multiple snapshots 

•  Questions 
– How should snapshots be taken? 
– What criteria must overall picture satisfy? 
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•  Process can record its own state 
•  States of all processes form global state 
•  Record valid global system state 
•  Detect stable properties 

– y(S) = true implies 
– y(all states reachable from S) = true 
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•  Distributed System Model 
•  Global State Detection Algorithm 
•  Recorded Global State Properties 
•  Stability Detection 
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•  Process 
– State(t) 
– Event(t) 

•  Channel 
– MessagesSent(t) 
– Event(t) 

Distributed Snapshots:  Determining Global States of Distributed Systems 

Distributed System Model 

•  Event 
– Process P 

•  State S before 
•  State S’ after 

– Channel C (incoming 
or outgoing from P) 
•  Messages (received by 

P or sent from P) 



•  Example 1:  Single Token System 
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States 
Global:  in-P 
P :  sI 
C :  empty 
C’ :  empty 
Q :  sO 

States 
Global:  in-C 
P :  sO 
C :  token 
C’ :  empty 
Q :  sO 

States 
Global:  in-Q 
P :  sO 
C :  empty 
C’ :  empty 
Q :  sI 

States 
Global:  in-C’ 
P :  sO 
C :  empty 
C’ :  token 
Q :  sO 

Event 
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Event 
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•  Example 2:  Nondeterministic System 
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Distributed System Model 

States 
Global:  S0 
P :  sI 
C :  empty 
C’ :  empty 
Q :  sI 

States 
Global:  S1 
P :  sO 
C :  M 
C’ :  empty 
Q :  sI 

States 
Global:  S2 
P :  sO 
C :  M 
C’ :  M’ 
Q :  sO 

States 
Global:  S3 
P :  sI 
C :  M 
C’ :  empty 
Q :  sO 

Event 
P sends 
M 

Event 
P receives 
M’ 

Event 
Q sends 
M’ 

Q P Q P 

Q P Q P 



•  Distributed System Model 
•  Global State Detection Algorithm 
•  Recorded Global State Properties 
•  Stability Detection 
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•  Marker Sending Rule 
– P records its state 
– P sends marker along each outgoing channel C 

•  Marker Receiving Rule 
– Q receives a marker along incoming channel C 
–  If Q has not recorded its state 

•  Q records its state 
– Else 

•  Q records C’s state as a sequence of messages 

Distributed Snapshots:  Determining Global States of Distributed Systems 
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•  Example:  Process P Obtains 
Global State from Process Q 
– Q receives P’s marker along channel C 
– Q records its state 
– Computation 
– Q receives P’s marker along channel C 
– Q records C’s state 
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•  Distributed System Model 
•  Global State Detection Algorithm 
•  Recorded Global State Properties 
•  Stability Detection 
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•  Markers produce concurrent subsequence 
– S* may not actually exist 
– S* from combination of concurrent events 

•  No effect on preceding/following events 
– S* reachable from Si 

– So reachable from S* 
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•  Theorem 1:  Exists Computation {e0’...en’} 
– Events 

•  { e0’ ... ei  -1’ }  is equivalent to     { e0 ... ei -1 } 
•  { ei’ ... eo -1’ }  is a permutation of  { ei  ... eo -1 } 
•  { eo’ ... en’   }  is equivalent to     { eo ... en   } 

– States 
•  { S0’ ... Si’   }  is equivalent to     { S0 ... Si   } 
•  For some k, where i<k<o, Sk’ = S* 
•  { So’ ... Sn’   }  is equivalent to     { So ... Sn   } 
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•  Distributed System Model 
•  Global State Detection Algorithm 
•  Recorded Global State Properties 
•  Stability Detection 
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•  Algorithm 
–  Initialize:  definite=false,  y(Si)=definite 
– Repeat:  record S*,  definite=y(S*) 

•  Implications of “definite” 
– definite == false: no stable property at start 
– definite == true:  stable property at termination 

•  Correctness 
– Si can lead to S*, S* can lead to So 

–  for all j:  y(Sj) = y(Sj+1) 
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•  Partial Ordering 
•  Recorded Global State 
•  Global State Detection Algorithm 
•  Stable Property Detection 
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•  Processes form recorded global state 
– Record its own state 
– Piece together multiple records 

•  Questions addressed 
– How should the snapshots be taken? 
– What criteria must overall picture satisfy? 
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Conclusions 


