
Ordering and Consistent Cuts

Nicole Caruso
Cornell University

Dept. of Computer Science

Time, Clocks, and the
Ordering of Events in a

Distributed System

Leslie Lamport
Stanford Research Institute

Time, Clocks, and the Ordering of Events in a Distributed System

Time, Clocks, and the Ordering of Events in a Distributed System

Leslie Lamport
Stanford Research Institute

About the Author

•  Our concept of time

Time, Clocks, and the Ordering of Events in a Distributed System

Introduction

•  Distributed system’s
concept of time

Read
news

Cross
street

See
green
light

Person Cars Observer

Read
news

Cross
street

See
green
light

Person Cars Observer

?

•  Coordination of Distributed Systems
•  Lack of Understanding
•  Partial Ordering of Events
•  Total Ordering of Events

Time, Clocks, and the Ordering of Events in a Distributed System

Introduction

•  Partial Ordering of Events
•  Logical Clocks
•  Total Ordering of Events
•  Anomalous Behavior
•  Physical Clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  System Definition
– System contains spatially separated processes
– Process contains a sequence of events
– Event manifestation is arbitrary, but must include

message sending and message receiving

Time, Clocks, and the Ordering of Events in a Distributed System

Partial Ordering of Events

•  Mathematical Properties
– Asymmetric

•  If a\<b, then b<a
•  If a\<b and b\<a, then a=b

– Transitive
•  If a\<b and b\<c, then a\<c

– Reflexive
•  a\<a

Time, Clocks, and the Ordering of Events in a Distributed System

Partial Ordering of Events

•  “Happened Before” Relation ()
– Asymmetric: If ab, then b\a

•  If a and b are in same process
–  ab if a occurs before b

•  If a and b are in different processes
–  ab if a is sending of message and b is receipt of message

•  If a is concurrent with b
–  a\b and b\a

– Transitive: If ab and bc, then ac
– Reflexive: a\a

Time, Clocks, and the Ordering of Events in a Distributed System

Partial Ordering of Events

•  Typical Space-
Time Diagram
for a Distributed
System

Time, Clocks, and the Ordering of Events in a Distributed System

Partial Ordering of Events

Read
news

Cross
street

See
green
light

Person Cars Observer

•  Partial Ordering of Events
•  Logical Clocks
•  Total Ordering of Events
•  Anomalous Behavior
•  Physical Clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Process Clock Ci
– Clock assigns number to event to represent time

•  Assigns Ci(a) to each event a within Pi

•  Belongs to one process Pi

•  System Clock C
– Clock C(a) = Ci(a)

Time, Clocks, and the Ordering of Events in a Distributed System

Logical Clocks

•  Clock Condition: If ab, then C(a) < C(b)
–  If events a and b are in the same process Pi

•  Ci(a)<Ci(b)
–  if a occurs before b

–  If events a and b are in processes Pi and Pj
•  Ci(a)<Cj(b)

–  a is the sending of a message
–  b is the receipt of the message

Time, Clocks, and the Ordering of Events in a Distributed System

Logical Clocks

•  Partial Ordering of Events
•  Logical Clocks
•  Total Ordering of Events
•  Anomalous Behavior
•  Physical Clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Total ordering eliminates concurrency
•  Identify message with event sending it
•  Following Example

– Multiple processes compete for resource
– Told from point of view of one process Pi

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

•  Process Pi is granted resource
– Request Tm:Pi

•  In Pi’s request queue
•  Time-stamped before other requests in the queue

– Acknowledge Tm:Pi
•  Received from Pj
•  Time-stamped later than Request Tm:Pi

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

•  Step 1: Pi Sends Request Resource
– Pi sends Request Tm:Pi to Pj

– Pi puts Request Tm:Pi on its request queue

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3

T1:P1 T0:P1

•  Step 1: Pi Sends Request Resource
– Pi sends Request Tm:Pi to Pj

– Pi puts Request Tm:Pi on its request queue

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3

T1:P1 T0:P1

request request

•  Step 2: Pj Adds Message
– Pj puts Request Tm:Pi on its request queue
– Pj sends Acknowledgement Tm:Pj to Pi

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3 T0:P1 T1:P1

T1:P1 T0:P1

•  Step 2: Pj Adds Message
– Pj puts Request Tm:Pi on its request queue
– Pj sends Acknowledgement Tm:Pj to Pi

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3 T0:P1 T1:P1

T1:P1 T0:P1

ack ack

•  Step 3: Pi Sends Release Resource
– Pi removes Request Tm:Pi from request queue
– Pi sends Release Tm:Pi to each Pj

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3 T0:P1 T1:P1

•  Step 3: Pi Sends Release Resource
– Pi removes Request Tm:Pi from request queue
– Pi sends Release Tm:Pi to each Pj

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3 T0:P1 T1:P1

release release

•  Step 4: Pj Removes Message
– Pj receives Release Tm:Pi from Pi

– Pj removes Request Tm:Pi from request queue

Time, Clocks, and the Ordering of Events in a Distributed System

Total Ordering of Events

P1

P2 P3

•  Partial Ordering of Events
•  Logical Clocks
•  Total Ordering of Events
•  Anomalous Behavior
•  Physical Clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Discrepancy between universe/system
– Event sets and “happens before” relations

Time, Clocks, and the Ordering of Events in a Distributed System

Anomalous Behavior

PA PB PC PA PB PC

Universal
Event Set
S: ab

System
Event Set
S: a\b
and b\a

•  Strong Clock Condition
– For events a and b in system event set S
–  If ab, Then C(a)<C(b)
– Attainable via physical clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Anomalous Behavior

•  Partial Ordering of Events
•  Logical Clocks
•  Total Ordering of Events
•  Anomalous Behavior
•  Physical Clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Physical Clock Ci(t)
– PC1

•  к << 1 for all i: | dCi(t)/dt˗̶̵ 1 | < к
– PC2

•  ϵ for all i,j: | Ci(t)˗̶̵ Cj(t) | < ϵ
– Also

•  µ < smallest transmission time

Time, Clocks, and the Ordering of Events in a Distributed System

Physical Clocks

•  Prevent anomalous behavior
– Must ensure that Cj(t) < Ci(t+µ)
– How small must к and ϵ be? ϵ/(1- к) < µ

Time, Clocks, and the Ordering of Events in a Distributed System

Physical Clocks

•  Partial ordering
•  Total ordering
•  Anomalous Behavior
•  Physical clocks

Time, Clocks, and the Ordering of Events in a Distributed System

Discussion

•  Coordination of Distributed Systems
•  Partial Ordering of Events
•  Total Ordering of Events

Time, Clocks, and the Ordering of Events in a Distributed System

Conclusions

Distributed Snapshots:
Determining Global States of

Distributed Systems

K. Mani Chandy
University of Texas at Austin

Leslie Lamport
Stanford Research Institute

Distributed Snapshots: Determining Global States of Distributed Systems

Distributed Snapshots: Determining Global States of Distributed Systems

K. Mani Chandy
University of Texas at Austin

Leslie Lamport
Stanford Research Institute

About the Authors

•  Panoramic dynamic scene
– Cannot capture with single snapshot
– Must piece together multiple snapshots

•  Questions
– How should snapshots be taken?
– What criteria must overall picture satisfy?

Distributed Snapshots: Determining Global States of Distributed Systems

Introduction

•  Process can record its own state
•  States of all processes form global state
•  Record valid global system state
•  Detect stable properties

– y(S) = true implies
– y(all states reachable from S) = true

Distributed Snapshots: Determining Global States of Distributed Systems

Introduction

•  Distributed System Model
•  Global State Detection Algorithm
•  Recorded Global State Properties
•  Stability Detection

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Process
– State(t)
– Event(t)

•  Channel
– MessagesSent(t)
– Event(t)

Distributed Snapshots: Determining Global States of Distributed Systems

Distributed System Model

•  Event
– Process P

•  State S before
•  State S’ after

– Channel C (incoming
or outgoing from P)
•  Messages (received by

P or sent from P)

•  Example 1: Single Token System

Distributed Snapshots: Determining Global States of Distributed Systems

Distributed System Model

States
Global: in-P
P : sI
C : empty
C’ : empty
Q : sO

States
Global: in-C
P : sO
C : token
C’ : empty
Q : sO

States
Global: in-Q
P : sO
C : empty
C’ : empty
Q : sI

States
Global: in-C’
P : sO
C : empty
C’ : token
Q : sO

Event
P sends

Event
Q receives

Event
Q sends

Q P Q P

Q P Q P

•  Example 2: Nondeterministic System

Distributed Snapshots: Determining Global States of Distributed Systems

Distributed System Model

States
Global: S0
P : sI
C : empty
C’ : empty
Q : sI

States
Global: S1
P : sO
C : M
C’ : empty
Q : sI

States
Global: S2
P : sO
C : M
C’ : M’
Q : sO

States
Global: S3
P : sI
C : M
C’ : empty
Q : sO

Event
P sends
M

Event
P receives
M’

Event
Q sends
M’

Q P Q P

Q P Q P

•  Distributed System Model
•  Global State Detection Algorithm
•  Recorded Global State Properties
•  Stability Detection

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Marker Sending Rule
– P records its state
– P sends marker along each outgoing channel C

•  Marker Receiving Rule
– Q receives a marker along incoming channel C
–  If Q has not recorded its state

•  Q records its state
– Else

•  Q records C’s state as a sequence of messages

Distributed Snapshots: Determining Global States of Distributed Systems

Algorithm

•  Example: Process P Obtains
Global State from Process Q
– Q receives P’s marker along channel C
– Q records its state
– Computation
– Q receives P’s marker along channel C
– Q records C’s state

Distributed Snapshots: Determining Global States of Distributed Systems

Algorithm

•  Distributed System Model
•  Global State Detection Algorithm
•  Recorded Global State Properties
•  Stability Detection

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Markers produce concurrent subsequence
– S* may not actually exist
– S* from combination of concurrent events

•  No effect on preceding/following events
– S* reachable from Si

– So reachable from S*

Time, Clocks, and the Ordering of Events in a Distributed System

Recorded Global State Properties

•  Theorem 1: Exists Computation {e0’...en’}
– Events

•  { e0’ ... ei -1’ } is equivalent to { e0 ... ei -1 }
•  { ei’ ... eo -1’ } is a permutation of { ei ... eo -1 }
•  { eo’ ... en’ } is equivalent to { eo ... en }

– States
•  { S0’ ... Si’ } is equivalent to { S0 ... Si }
•  For some k, where i<k<o, Sk’ = S*
•  { So’ ... Sn’ } is equivalent to { So ... Sn }

Time, Clocks, and the Ordering of Events in a Distributed System

Recorded Global State Properties

•  Distributed System Model
•  Global State Detection Algorithm
•  Recorded Global State Properties
•  Stability Detection

Time, Clocks, and the Ordering of Events in a Distributed System

Outline

•  Algorithm
–  Initialize: definite=false, y(Si)=definite
– Repeat: record S*, definite=y(S*)

•  Implications of “definite”
– definite == false: no stable property at start
– definite == true: stable property at termination

•  Correctness
– Si can lead to S*, S* can lead to So

–  for all j: y(Sj) = y(Sj+1)
Time, Clocks, and the Ordering of Events in a Distributed System

Stability Detection

•  Partial Ordering
•  Recorded Global State
•  Global State Detection Algorithm
•  Stable Property Detection

Time, Clocks, and the Ordering of Events in a Distributed System

Discussion

•  Processes form recorded global state
– Record its own state
– Piece together multiple records

•  Questions addressed
– How should the snapshots be taken?
– What criteria must overall picture satisfy?

Time, Clocks, and the Ordering of Events in a Distributed System

Conclusions

