Multicast

Qi Huang
CS6410 2009 FA
10/29/09

Cornell University
Computer Science

\ oy
o 4% iy
\\{ Wllat iS |I||||U’Cas'| .;

e Basicidea: same data needs to reach
a set of multiple receivers

° AppIiCaﬁOn:

Why not just unicast?

Unicast :

 How about using unicast?

e Sender’s overhead grows linearly
with the group size

‘ ' _* Bandwidth of sender will exhaust

@ @ @
@K@@@

S e
g
< e

How does multicast work?

How does multicast work?

* |P multicast (IPMC)

— Use router to copy data on the network
layer, Deering proposed in 1990

How does multicast work?

b
¢—5_ &

e Application layer multicast (ALM)

— Use proxy node or end host to copy
data on application layer,

State of the art
e IPMC is disabled in WAN

— Performance issues (Karsruhe,
Sigcomm)
— Feasibility issues

— Desirability issues
— Efficient in LAN

 ALM has emerged as an option
— Easy to deploy and maintain

) — Based on internet preferred unicast
| — No generic infrastructure

Research focus

* Scalability

— Scale with group size

— Scale with group number
* Reliability

— Atomicity multicast

— Repair best-effort multicast

Trade-off is decided by the
application scenarios

Agenda

e Bimodal Multicast
— ACM TOCS 17(2), May 1999

e SplitStream: High-Bandwidth
Multicast in Cooperative
Environments

— SOSP 2003

Ken Birman
Cornell University

LAY
Mark Hayden Oznur Ozkasap Zhen Xiao
Digital Research Center Kog University Peking University

Mihai Budiu Yaron Minsky
Microsoft Research Jane Street Capital

Application scenario

e Stock exchange, air traffic control

needs:

— Reliability of critical information transmission
— Prediction of performance

— 100x scalability under high throughput

Bimodal Multicast

Outline

* Problem

* Design

* Analysis

* Experiment
* Conclusion

V

N

Problem

e Virtual Synchrony
— Offer strong relialbility guarantee

Costly overhead, can not scale under
stress

* Scalable Reliable Multicast (SRM)
— Best effort reliability, scale better

Not reliable, repair can fail under
bigger group size and heavy load

Let’s see how these happen

Problem

e Virtual Synchrony

— Under heavy load, some one may be
slow

Fp Most members
%ée / % are healthy

.. but one is slow

i.e. something is contending with the receiver,
delaying its handling of incoming messages...

Problem

e Virtual Synchrony

— Slow receiver can collapse the system

throughput

Virtually synchronous Ensemble multicast protocols

average throughput on nonperturbed members

250
—E—
S

—r—

group size: 32
group size: 64
group size: 96

0 0.1 0.2 0.3 0.4 0.5 0.6
perturb rate

0.7 0.8 0.9

Problem

 Virtual Synchrony (reason?)

— Data for the slow process piles up in the

sender’s buffer, causing flow control to
kick in (prematurely)

— More sensitive failure detector
mechanism will rise the risk of
erroneous failure classification

Problem

* SRM

— Lacking knowledge of membership,
SRM’s NACK and retransmission is
multicast

— As the system grows large the
“probabilistic suppression” fails
(absolute likelihood of mistakes rises,
causing the background overhead to
rise)

Design

* Two step multicast

— Optimistic multicast to disseminate
message unreliably

— Use two-phase anti-entropy gossip to
repair
* Benefits

— Knowlege of membership achieves
better repair control

) — Gossip provides:

* Ligher way of detecting loss and repair

* Epidemic model to predict performance

Design

< |
\
sﬁﬁ\s

Start by using unreliable multicast to rapidly
distribute the message. But some messages

may not get through, and some processes may
be faulty. So initial state involves partial
distribution of multicast(s)

Bimodal Multicast

A 4

v

v

A 4

v

Periodically (e.g. every 100ms) each process
sends a digest describing its state to some
randomly selected group member. The digest
identifies messages. It doesn’t include them.

Bimodal Multicast

A 4

v

v

A 4

v

Recipient checks the gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the gossip

Bimodal Multicast

A 4

v

v

A 4

v

Processes respond to solicitations received
during a round of gossip by retransmitting the
requested message. The round lasts much
longer than a typical RPC time.

Design

* Deliver a message when itis in FIFO
order

* Garbage collect a message when you
believe that no “healthy” process
could still need a copy (we used to
wait 10 rounds, but now are using
gossip to detect this condition)

 Match parameters to intended
) environment

Design

e \Worries

— Someone could fall behind and never

catch up, endlessly loading everyone
else

— What if some process has lots of stuff
others want and they bombard him
with requests?

— What about scalability in buffering and

in list of members of the system, or
) costs of updating that list?

Design

* Optimization
— Request retransmissions most recent
multicast first

— Bound the amount of data they will
retransmit during any given round of
gossip.

— lgnore solicitations that have expired
round number, reasoning that they are
from faulty nodes

Design

* Optimization
— Don’t retransmit duplicate message

— Use IP multicast when retransmitting a
message if several processes lack a copy

* For example, if solicited twice

e Also, if a retransmission is received
from “far away”

* Tradeoff: excess messages versus low
latency

— Use regional TTL to restrict multicast
scope

Bimodal Multicast

Analysis

* Use epidemic theory to predict the
performance

Pbcast bimodal delivery distribution

1.E+00 1
1.E-05 1

1.E-10 -

=k }

1.E-15 1
1.E-20 1

1.E-25 1

p{#processes

1.E_3O))))))))))
0 5 0 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

Analysis

* Failure analysis

— Suppose someone tells me what they
hope to “avoid”

— Model as a predicate on final system
state

— Can compute the probability that
pbcast would terminate in that state,
again from the model

Analysis

* Two predicates

— Predicate |I: More than 10% but less

than 90% of the processes get the
multicast

— Predicate II: Roughly half get the
multicast but crash failures might
“conceal” outcome

— Easy to add your own predicate. Our

methodology supports any predicate
over final system state

Pbcast bimodal delivery distribution

Scalability of Pbcast reliability

1.E+00 1.E-05 A
= 1E-051 . 1E-10-

n . g 1.E-15 1

g 1E T 1E-207

@ E-151 ¥ 1E-251

3 O 1E-30-

O 1E-201 =

ol 135 +4—m—

¥ O1E-251 10 15 20 25 30 35 40 45 50 55 60

o
1.E-30 — T #processes in system

0O 5 10 15 20 25 30 35 40 45 50
number of processes to deliver pbcast . :
P pbeast [l Predicate | ————Predicate |l
Effects of fanout on reliability Fanout required for a specified reliability
1E+004 - L [——

. 1E-021 5 281 e

o 1.E-041 o 65:

5 1E-06 1 c ©al

S 1.E-08 1 &S 5.§:

=, 1E-101 4,5-

o 1E-121 T T T T T T
1.E-14 1 20 25 30 35 40 45 50
1E-16 T T T .

1 2 3 4 5 @6 g8 9 10 #processes in system
fanout
------------------- Predicate | for 1E-8 reliability
_______ Predicate| ————Predicate |l ——Predicate Il for 1E-12 reliability

Figure 5: Graphs of analytical results

Bimodal Multicast

Experiment

* Src-dst latency distributions

Histogram of throughput for Ensemble's FIFO
Virtual Synchrony Protocol

o
g

qs, 08 @ Traditional Protocol
S 06 with .05 sleep

° probability

S 04 "

> B Traditional Protocol
£ 02 with 45 sleep

2 o

s 0 ‘ probability

©

-

a

O b HH PSS
L’ &N” & & X &K L
SUENENENIENARNRN,

Inter-arrival spacing (ms)

Histogram of throughput for

sleep probability

Probability of occurence

Inter-arrival spacing (ms)

average throughput

Revisit the problem figure, 32 processes

Low bandwidth comparison of pbcast performance at faulty and correct hosts

200 —, , T
o—o traditiond W/ perturbed
180+ s+ pbeast w/ perturbed
g—a throughput for traditiond, measured at perturbed host
160 | w—s throughput for pbeast measured a perturbed host
140+
120¢
100—————
80t
60 |
40t
20t
U 1 1 1 1 1 1 1 1 1
0.1 02 03 04 05 06 07 08 09
perturb rate

average throughput

High bandwidth comparison of pbcast performance at fauity and correct hosts

200

180

—
o
o

[e'e]
o

40

20

o—o fraditiond: at unperturbed host
4— 4 pbeast: at unperturbed host
G—p radtiond: at perturbed host
7 pbeast: at perturbed host

0.1 02 0.3 04 05 0.6 07 08 09
perturb rate

Bimodal Multicast

Experiment

- mean and standard deviation of pbeast throughput: 16-member group mean and standard deviation of pbeast throughput: 96-member group
T T T T T T T T T 220 r r r r r r r T T

215} B 215 i

210} B o0l i
’o‘ —

[

% 2051 1 8 205} |
3 R S S
E x 3 4
5 2004 §- T T T h % 2004 J_
Z Lo |
3 1951 b 3 195F 4
£ £

190} E 190| i

185} 1 185} J

180 L L L L - - - - - 180 A A A A A A A A A

0 005 01 01 02 025 03 035 04 045 O 0 005 01 015 02 02 03 035 04 045 05
perturb rate perturb rate
mean and standard deviation of pbeast throughput: 128-member group standard deviation of pbcast throughput

220 r r r r r r r r r 150 r r

215}]
g 100} E
? T 3
£ 8
2 | g
2 1 &
£ o sl |

190}]

1851]

413/0
180 L olao-—o T .
0 005 01 01 02 02 03 035 04 045 0! 0 50 100 150

perturb rate process group size

Impact of packet loss on reliability and retransmission
rate

Pbcast with system-wide message loss: high and low bandwidth Pbeast background overnead: perturbed process percentage (25%)
- - - - - - - - - 100 - - - - - -
o—o B8nodes
S0+ $— % 16nodes |-
3—~F 64 nodes
80} w—v 128 nodes | 4
Q
2 _ i 70k
8 M= 7
o 7\5
= ey ; 60 |
é 50}
S L oo e e 8
[
£ —o— hbw8 40r
% —%— hbw32
3 —g— hbwe4 0}
© —— hbw9s
—-G--- |bWB 20
- 1DWI32
g Ibw6d 10}
- |1bWIB
i ! . A . 2 . . .
0 002/ 004 006 008 01 012 014 016 018 02 005 01 01 02 025 03 035 04 045 05

system-wide drop rate perturb rate

Notice that when network becomes
overloaded, healthy processes
experience packet loss!

Optimization

Withzut Round Retsansmissicn Limit
140 140
130 10
120 120
110}k 4
5 : I ——e— Neasenal - % 2
E 120 A,v WA Allb\f\ﬁ.a‘/] b ‘.\M'JL\A ;\,-.\1 P Ewo N g nmr A Ao AR A afsan-n
|
sof \ | %@
20F 8
Tk]
20 &2
P x . N N . N N 2 " 2 . N 2 . . N N z .
0 10 20 30 & Ss0 e T s s0 10] 10 20 N &£ S € W s 99 100
sec sec
Without muticas: retransmission With malscast retrarsmssion
200 T T T T T 150 T T T T T
120 142
120 120
140 120
120} \ 190
@« | ,I (|
F 10 ruv_.,,s_| — |l—.‘ S 100 A AP e A
- ‘ |J |
20 ‘ 9
20t a
404 ™
0k &2
0 . N . N N X . . N 2 . N . N . N . N N
0 10 20 30 & S0 6 W 8 S0 100] 10 20 N & S50 € W 82 9 102

Conclusion

* Bimodal multicast (pbcast) is reliable in a
sense that can be formalized, at least for
some networks

— Generalization for larger class of networks
should be possible but maybe not easy

* Protocol is also very stable under steady
load even if 25% of processes are
perturbed

* Scalable in much the same way as SRM

Miguel Castro Peter Druschel Anne-Marie Kermarrec Animesh Nandi
Microsoft Research MPI-SWS INRIA MPI-SWS

Antony Rowstron Atul Singh
Microsoft Research NEC Research Lab

Applicatoin scenario

 P2P video streaming, needs:
— Capacity-aware bandwidth utilization
— Latency-aware overlay
— High tolerance of network churn
— Load balance for all the end hosts

SplitStream

Outline

* Problem
* Design (with background)
* Experiment

e Conclusion

Problem

* Tree-based ALM
— High demand on few internal nodes

* Cooperative environments
— Peers contribute resources

— We don't assume dedicated
infrastructure

— Different peers may have different
) limitations

Design

* Split data into stripes, each over its
own tree

* Each node is internal to only one tree
* Built on Pastrv and Scribe

Background

* Pastry

6 (6 6 6 |6
51515155
b |c |d e |f
X |x |[x |x |x

71819 |a |b |c |d|e |f

X |[X | X |[X |[X (X |[X |[X |[X

66 666 |6 6 6|66

6|7 (819 |a |b|c |d e |f
XX [x|x|x |[x |x |[x |x |x

6 (6 6 6 66 6|66 6 6 |6 6|6

S5 (5 (555 555551515 |5

a |a |a |a |a|a |a|a|a |a |a |a |a |a
23 141|51|6|7 |8|9|a |b|c |d|e|f

X (X |[X (X |[X |X |[X | X |X |[X |[X |[X |[X |[X

01 (2|3 |4 |5

X |[X |X |[X | X [X

6 (6 6 |6 |6

X |[X |X [X |X

6 |6 |6 |16 6 |6 66 6|6
S5 (555 (51(5(5 (515
0|1 (23 (4\(5|6|7|819

X [X |X (X |[X [X |[X |X [X |X

6
5

S

Row 0

Row 11l{o |1 |2 (3 |4

Row 2

Row 3

=
Z
=
on
o
[

IrOwWS

SplitStream

Background

* Pastry
- d471f1
d467c4
S (462ba
d46alc
d4213f

‘\ Route(d46a1c) '@ d13da3

SplitStream

Background

e Scribe

Design

* Stripe
— SplitStream divides data into stripes

— Each stripe uses one Scribe multicast
tree

— Prefix routing ensures property that
each node is internal to only one tree

* Inbound bandwidth: can achieve desired
indegree while this property holds

 Outbound bandwidth: this is harder—we'll
have to look at the node join algorithm to
see how this works

SplitStream
Design

e Stripe tree initialize
— # of strips = # of Pastry routing table
columns

— Scribe's push-down fails in Splitstream

Source

é& 0.00 - - -
Strlpeld Ox Strlpeld 1X Stripeld Fx

O Nodeldks starting Ox O Nodelds starting Fx
® Nodelds starting 1x -~ Nodelds starting 2x..Ex

Design

e Splitstream push-down

— The child having less prefix match
between node ID and stripe ID will be
push-down to its sibling

089* 08B* 081" 9* 089* 08B* 081* 9*

(1) (2)

(3)

SplitStream
Design

* Spare capacity group
— Organize peers with spare capacity as a
Scribe tree

— Orphan nodes anycast in the spare
capacity group to join

anycast

in: {0.3.A} _.-"in: {1,...,16}
spare: 2 .- spare: 4

-
-
.......

SplitStream
Design

* Correctness and complexity

— Node may fail to join a non prefix
maching tree

— But the failure of forest construction is
unlikely

Imin k-1
IN| x k % (1)

Design

* Expected state maintained by each
node is O(log[N|/)

* Expected number of messages to
build forest is O(|N[log[N|) if trees
are well balanced and O(|N|[?) in the

worst case

* Trees should be well balanced if each
node forwards its own stripe to two
) other nodes

* Forest construction overhead

1 1
§0.9 . %0.9 5
20.8 2038 A
“20.7 1 “20.7 .
-$_.0.6 £06 # ~dxd [
50-5 - 16x32 [805 I - Gnutella [
E‘;—; =16 18 [_§g-; _ ~16x 16 [
Kohe —-+-16x 16 i
g0.2 202 -
30.1 30.1 1

0 T T 0 - = T T

100 1000 10000 1 10 100 1000 10000
Node Stress Node Stress

Figure 8: Cumulative distribution of node stress Figure 9: Cumulative distribution of node stress
during forest construction with 40,000 nodes on during forest construction with 40,000 nodes on
GATech. GATech.

1
i @ 0.2

&038

——16x 16

— |P Multicast

-1
05 8x16

10 100 1000
Link stress

{a) SplitStream vs [P

100C 1 10 100 1000
Link siress

(b) SplitStream vs Seribe

10000

18
14

10

Cumulative stripes
(] | ST N 1) o

o ¥

-h
(=]
ae Y

-
s

=y
ra

% RAD (16 x NB)
~+RAD (18 x 32)
-=-RAD (18 x 18)
—-RAD (18 x 16)

-
(=]

N
. L . ‘_»’

Number of Stripes

~—Maximum
-+ Average

——Minimum

(ST S} Hh > w
1

80 100 120 140 180 180 200 220
Time (seconds)

Conclusion

e Striping a multicast into multiple
trees provides:
— Better load balance
— High resilience of network churn

— Respect of heteogeneous node
bandwidth capacity

* Pastry support latency aware and
cycle free overlay construction

Discussion

* Flaws of Bimodal multicast
— Relying on IP multicast may fail
— Tree multicast is load unbalanced and churn
vulnarable
* Flaws of Splitstream

— Network churn will introduce off-pastry link
between parent and child, thus loose the benefit of
pastry [from Chunkyspread]

— |ID-based constrains is stronger than load constrains

