Staggeringly Large Filesystems
Evan Danaher

CS 6410 - October 27, 2009

Outline

@ Large Filesystems
® GFS

® Pond

Outline

@ Large Filesystems

What is “Large”

e “Internet Scale”

Web 2.0
GFS

« Thousands of machines’

Hundreds of active jobs'

4 Petabyte filesystems'’

40 GB/s read/write load'

Future: Spanner: millions of machines,
Exabytes of storage’

Pond

e ~1000 machines
o Designed to scale to millions.

Jeff Dean, LADIS 2009

Different Approaches

e Local/Wide Area
¢ Communication Model

o P2P
e Tiered
o Centralized

e Trusted/Untrusted Nodes

Outline

® GFS

Motivation

Component failures are common
e Durability
» Fast startup important

Huge files
Append, not random writes

Large streaming reads or small random
reads

Design

Very pragmatic

Fast startup after failures
Co-designed with applications
Favor bandwidth over latency
Trusted Nodes

Centralized

@@ -

Key Points

Chunkserver

Chunkserver

Chunkserver

o Chunkservers store data
» Centralized master controls everything
o Relaxed consistency model

Interface

o Create, Delete, Open, Close, Read, Write

e Snapshot: Cheap copy at a point in time
e Record append

» Safe concurrent append by multiple
applications

Chunkservers

Client

Chunkserver Chunkserver Chunkserver

 Store fixed 64MB chunks
 Indexed by chunkID
o Checksummed
» Fixed size simplifies design
 Stored as files on local filesystem
e Replicated (default 3 times)

o Authoritative on which chunks are stored

Master

]

Chunkserver Chunkserver Chunkserver

 Single master with all metadata in memory

o Fast and simple
o Global decisions are easy
e Less than 64 bytes / 64MB chunk

o Requests chunk data from chunkservers on
startup

 Authoritative on file to chunk mapping

Master Durability

Single point of failure

Log all operations to replicated log
Checkpointed for quick recovery
Readable shadow master replicas

Garbage Collection

On deletion, rename to a hidden file
Remove hidden files after 3 days
Periodically scan and erase orphan chunks

Each chunkserver HeartBeat sends some
stored chunks

In master response, send unknown ones
Simple cleanup for all cases

Consistency Model

Relaxed consistency model

Namespace mutations are atomic

Data is less clear

Consistent: All clients see same data
Defined: Consistent, mutation is correct
Concurrent writes: consistent, not defined
Concurrent record appends: defined
interspersed with inconsistent

Record append has weak guarantees

o Record was appended atomically at least once
» May also be junk the applications should ignore

Locking

o Files are identified by paths

e No directory structure
e To lock a file

o Read locks on ancestor directories
o Read or write lock on requested file(s)
o Order by depth, lexicographically

Mutation Control

]

Chunkserver

Primary

Replica Chunkserver

One replica, the primary, gets a chunk
lease.

The primary picks the ordering of mutations.
Times out after 1 minute, usually renewed.
Can be revoked (e.g., for snapshots)

Lifecycle of a Mutation

Primary
Replica

Chunkserver Chunkserver

 Client requests lease holder from master
o Created if necessary

Lifecycle of a Mutation

e

Primary
Replica

Chunkserver Chunkserver

o Master sends primary, secondary replicas

Lifecycle of a Mutation

o

> Primary g
Replica

Chunkserver Chunkserver

 Client pushes data to all replicas
« Linear forwarding pipeline

Lifecycle of a Mutation

o

Primary
Replica

Chunkserver Chunkserver

 Client sends write request to primary

Lifecycle of a Mutation

Primary
Replica

Chunkserver <& —>»Chunkserver

e Primary forwards write request to
secondaries

Lifecycle of a Mutation

s

Primary
Replica

Chunkserver =& ~>Chunkserver

e Secondaries report completion to primary

Lifecycle of a Mutation

o

Primary
Replica

Chunkserver =&
=

~>»Chunkserver
|

e Primary reports completion to client

Record Append

Guarantees at least one atomic append
Uses basic mutation control flow

Failure at any replica leads to a retry

Might leads to inconsistent data/duplicates
« Filtered out by the application

Can’t span chunks

o If it doesn’t fit, start a new chunk
o Limit to 1/4 chunk size to avoid fragmentation

Detecting Failure

Chunk version numbers detect stale
replicas

Regular handshakes with master detect
failed chunkservers

Checksums detect corrupted data
o Checksums are stored in memory
» They are persisted in a log separate from data
« Idle clients may checksum unused data
Failed replicas are ignored by the master
» Cloned as soon as possible to avoid data loss

Replica Placement

Below-average disk utilization
» Equalize load across chunkservers
Limit “recent” creations per chunkserver
» Avoid flooding a chunkserver with writes
Spread replicas across racks
o Redundancy, read bandwidth
Periodically rebalance
o Gradually fills up new chunkservers

High Availability

Fast recovery
Chunk replication
Master replication
Checksums

Performance

Test Clusters

| Cluster | A | B |

Chunkservers 342 227

Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 k| 1550 k
M etadata at chunkservers 13 GB 21 GB
M etadata at master 48 MB 60 MB

o Cluster A: R&D for over 100 engineers
o Cluster B: Production data processing

Performance

Test Clusters

| Cluster | A | B |

Chunkservers 342 227

Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 k| 1550 k
M etadata at chunkservers 13 GB 21 GB
M etadata at master 48 MB 60 MB

o Metadata on chunkservers: mostly
checksums

o Metadata on master: small

Performance

Test Clusters

| Cluster | A | B |

Chunkservers 342 227

Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 k| 1550 k
M etadata at chunkservers 13 GB 21 GB
M etadata at master 48 MB 60 MB

e Roughly 50-100 MB/server

» Fast recovery

g

Read rate (MB/s)

0

8

Network limit

Adggregate read rate

0

5 10 15
Number of dientsN

(a) Reads

Performance

Throughput

8

Write rate (MB/s)

o

&

N
bl

/N;@a‘-efme

0 5 1o
Number of dients N

(b) Writes

15

» High throughput for reads and writes

Performance

Usage
[Cluster | A | B |
Read rate (last minute) 583 MB/s | 380 MB/s
Read rate (last hour) 562 MB/s | 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (Tast minute) 325 Ops/s | 533 Ops/s
M aster ops (last hour) 381 Ops/s | 518 Ops/s
Master ops (since restart) 202 Ops/s | 347 Ops/s

o Majority read
e Low master load

Key Points

e Chunkservers store 64M chunks
o Stored redundantly

o Centralized master controls everything
 Stores all metadata in memory
e Logs replicated for durability

o Relaxed consistency model

« Consistent/defined segments
o Weak record append guarantee

Outline

® Pond

Design Goals

More general storage model
Only trusts infrastructure in aggregate

e Failures or malicious users
e Churn

Data is universally available
Good consistency model

Key Points

o Versioned data model
o Byzantine agreement for primary copy
o Erasure-coded archive for durability

Data Model

o Allow arbitrary writes via CoW.
o Data Object (“file”)
» Sequence of read-only versions
» Simplifies caching, replication
 Allows time travel

Data Object

AGUID

1
1
I
1
! I
1
! I | I
! | | |
| indirect | |] |
! blocks | | |
! 1 |
| | copy on write | |
| | ! |
1
! |
1
I

o B-Tree-like structure
» Each block is referenced by a Block GUID

o Cryptographically-secure hash of its contents

Data Object

o AGUID .
- VGUID; VGUID;,, 1
o motblock 1 ””7”:
~— - M| 7o M| -

data [l [[ds [d] s [

e Root BGUID of a version is its Version
GUID

o Active GUID describes a set of versions
o Shared copies for free

Tapestry

Virtualizes Resources

Host and resources are identified by GUIDs
Hosts publish GUIDs of their resources
Messages are addressed to GUIDs

Tapestry routes messages to a nearby host
with the GUID.

Primary Replica

Each object has a “primary replica”

» Maintains AGUID to VGUID mapping

» Serializes updates.
Really a collection of servers: the inner ring
Uses a Byzantine agreement protocol

» assume any failure of less than 1/3 of the group

MAC within the group, public key outside

Proactive threshold signatures allow churn
within this group without breaking the public
key

Replication/Consistency

o BGUID verifies contents of a block
o Safe replication of blocks is easy

o AGUID to VGUID mapping changes
o Primary copy replication:
o Primary replica applies all updates
o Creates a certificate mapping AGUID to the
most recent VGUID.
 Client can verify most recent using a nonce.
» Response contains nonce, is signed.

Archiving

o Replication is space-inefficient.
o Erasure codes (Cauchy-Reed-Solomon):
« split a block into m fragments
e encode into n > m fragments
« any m of the n can reconstruct the file
o Fragments are distributed uniformly
deterministically based on BGUID and
fragment number

Caching

To locate a block, look up its BGUID

On failure, use fragments to reconstruct
After reconstructing, publishes ownership
o Future readers can use this copy
Discarded whenever convenient
o And unpublished from Tapestry

Performance

Local Archive Performance

Read Latency vs. Read Size

200 !
Read From Archive
Read From Remote Cache
150 +
g
g 100 [
g
-
50
0 L L L L
8 16 24 32
Read Size (kB)

o Reconstruction is within 1.7 times of
reading a remote replica.

Performance

Local Throughput

Update Throughput vs. Update Size

E ! ! ! - T 12
S 140 | Ops/s, Archive Disabled ——
3 Ops/s, Aml}ive Epabled 110 =
= 120 MB/s, Archive Disabled = -
2 MB/s, Archive Enabled -5 g
g2 100 . + 8 S
g S
£ 80 x_ 6 E
D
S 60} E
] 4 -]
3 40 + 3
|9 2 s
= 20 , =
3 - —
ﬁ 0 ! L L L i

4 16 64 256 1024

Size of Update (kB)

o Computationally limited by inner ring

Performance

Wide Area Throughput

IR Location | Client Location | Throughput (MB/s)
Cluster Cluster 2.59
Cluster PlanetLab 1.22
Bay Area PlanetLab 1.19

e Local cluster
e Reconstruction is within 1.7 times of

reading a remote replica.

Performance

Archive Performance
Read Latency vs. Read Size
200 —

Read From Archive
Read From Remote Cache
150
g
g 100 |,
3
50
0 L L L L
8 16 24 32
Read Size (kB)

e Local cluster

o Reconstruction is within 1.7 times of
reading a remote replica.

Performance

Andrew Benchmark

LAN WAN

Linux OceanStore | Linux OceanStore
Phase NFS 512 1024 NES 512 1024

1 0.0 1.9 4.3 0.9 2.8 6.6
I 03 11.0 240 94 16.8 40.4
m 1.1 1.8 1.9 8.3 1.8 1.9
v 0.5 1.5 1.6 6.9 1.5 1.5
\% 26 21.0 422 21.5 320 70.0
Total 45 372 739 47.0 549 1203

Times in seconds

o NFS Loopback on Oceanstore vs. NFS
o NFS faster on LAN, slower on WAN.

o Less computation, less efficient network

Key Points

 Versioned data model
o Updates are by CoW
» Simplifies caching
o Byzantine agreement for primary copy
» No single point of failure
o Erasure-coded archive for durability
» Provides space-efficient storage

Summary

o Tradeoffs in large filesystems
o GFS

» Centralized Master

o Trusted Nodes

o Weak consistency
e Pond

 Fully distributed

e Untrusted Nodes

« Efficient long-term storage

	Large Filesystems
	GFS
	Pond

