
Staggeringly Large Filesystems

Evan Danaher

CS 6410 - October 27, 2009



Outline

1 Large Filesystems

2 GFS

3 Pond



Outline

1 Large Filesystems

2 GFS

3 Pond



What is “Large”

• “Internet Scale”
• Web 2.0
• GFS

• Thousands of machines1

• Hundreds of active jobs1

• 4 Petabyte filesystems1

• 40 GB/s read/write load1

• Future: Spanner: millions of machines,
Exabytes of storage1

• Pond
• ∼1000 machines
• Designed to scale to millions.

1Jeff Dean, LADIS 2009



Different Approaches

• Local/Wide Area
• Communication Model

• P2P
• Tiered
• Centralized

• Trusted/Untrusted Nodes



Outline

1 Large Filesystems

2 GFS

3 Pond



Motivation

• Component failures are common
• Durability
• Fast startup important

• Huge files
• Append, not random writes
• Large streaming reads or small random

reads



Design

• Very pragmatic
• Fast startup after failures
• Co-designed with applications
• Favor bandwidth over latency
• Trusted Nodes
• Centralized



Key Points

• Chunkservers store data
• Centralized master controls everything
• Relaxed consistency model



Interface

• Create, Delete, Open, Close, Read, Write
• Snapshot: Cheap copy at a point in time
• Record append

• Safe concurrent append by multiple
applications



Chunkservers

• Store fixed 64MB chunks
• Indexed by chunkID
• Checksummed
• Fixed size simplifies design
• Stored as files on local filesystem
• Replicated (default 3 times)

• Authoritative on which chunks are stored



Master

• Single master with all metadata in memory
• Fast and simple
• Global decisions are easy
• Less than 64 bytes / 64MB chunk

• Requests chunk data from chunkservers on
startup

• Authoritative on file to chunk mapping



Master Durability

• Single point of failure
• Log all operations to replicated log
• Checkpointed for quick recovery
• Readable shadow master replicas



Garbage Collection

• On deletion, rename to a hidden file
• Remove hidden files after 3 days
• Periodically scan and erase orphan chunks
• Each chunkserver HeartBeat sends some

stored chunks
• In master response, send unknown ones
• Simple cleanup for all cases



Consistency Model

• Relaxed consistency model
• Namespace mutations are atomic
• Data is less clear

• Consistent: All clients see same data
• Defined: Consistent, mutation is correct
• Concurrent writes: consistent, not defined
• Concurrent record appends: defined

interspersed with inconsistent
• Record append has weak guarantees

• Record was appended atomically at least once
• May also be junk the applications should ignore



Locking

• Files are identified by paths
• No directory structure
• To lock a file

• Read locks on ancestor directories
• Read or write lock on requested file(s)
• Order by depth, lexicographically



Mutation Control

• One replica, the primary, gets a chunk
lease.

• The primary picks the ordering of mutations.
• Times out after 1 minute, usually renewed.
• Can be revoked (e.g., for snapshots)



Lifecycle of a Mutation

• Client requests lease holder from master
• Created if necessary



Lifecycle of a Mutation

• Master sends primary, secondary replicas



Lifecycle of a Mutation

• Client pushes data to all replicas
• Linear forwarding pipeline



Lifecycle of a Mutation

• Client sends write request to primary



Lifecycle of a Mutation

• Primary forwards write request to
secondaries



Lifecycle of a Mutation

• Secondaries report completion to primary



Lifecycle of a Mutation

• Primary reports completion to client



Record Append

• Guarantees at least one atomic append
• Uses basic mutation control flow
• Failure at any replica leads to a retry
• Might leads to inconsistent data/duplicates

• Filtered out by the application
• Can’t span chunks

• If it doesn’t fit, start a new chunk
• Limit to 1/4 chunk size to avoid fragmentation



Detecting Failure

• Chunk version numbers detect stale
replicas

• Regular handshakes with master detect
failed chunkservers

• Checksums detect corrupted data
• Checksums are stored in memory
• They are persisted in a log separate from data
• Idle clients may checksum unused data

• Failed replicas are ignored by the master
• Cloned as soon as possible to avoid data loss



Replica Placement

• Below-average disk utilization
• Equalize load across chunkservers

• Limit “recent” creations per chunkserver
• Avoid flooding a chunkserver with writes

• Spread replicas across racks
• Redundancy, read bandwidth

• Periodically rebalance
• Gradually fills up new chunkservers



High Availability

• Fast recovery
• Chunk replication
• Master replication
• Checksums



Performance
Test Clusters

• Cluster A: R&D for over 100 engineers
• Cluster B: Production data processing



Performance
Test Clusters

• Metadata on chunkservers: mostly
checksums

• Metadata on master: small



Performance
Test Clusters

• Roughly 50-100 MB/server
• Fast recovery



Performance
Throughput

• High throughput for reads and writes



Performance
Usage

• Majority read
• Low master load



Key Points

• Chunkservers store 64M chunks
• Stored redundantly

• Centralized master controls everything
• Stores all metadata in memory
• Logs replicated for durability

• Relaxed consistency model
• Consistent/defined segments
• Weak record append guarantee



Outline

1 Large Filesystems

2 GFS

3 Pond



Design Goals

• More general storage model
• Only trusts infrastructure in aggregate

• Failures or malicious users
• Churn

• Data is universally available
• Good consistency model



Key Points

• Versioned data model
• Byzantine agreement for primary copy
• Erasure-coded archive for durability



Data Model

• Allow arbitrary writes via CoW.
• Data Object (“file”)

• Sequence of read-only versions
• Simplifies caching, replication
• Allows time travel



Data Object

• B-Tree-like structure
• Each block is referenced by a Block GUID

• Cryptographically-secure hash of its contents



Data Object

• Root BGUID of a version is its Version
GUID

• Active GUID describes a set of versions
• Shared copies for free



Tapestry

• Virtualizes Resources
• Host and resources are identified by GUIDs
• Hosts publish GUIDs of their resources
• Messages are addressed to GUIDs
• Tapestry routes messages to a nearby host

with the GUID.



Primary Replica

• Each object has a “primary replica”
• Maintains AGUID to VGUID mapping
• Serializes updates.

• Really a collection of servers: the inner ring
• Uses a Byzantine agreement protocol

• assume any failure of less than 1/3 of the group

• MAC within the group, public key outside
• Proactive threshold signatures allow churn

within this group without breaking the public
key



Replication/Consistency

• BGUID verifies contents of a block
• Safe replication of blocks is easy

• AGUID to VGUID mapping changes
• Primary copy replication:

• Primary replica applies all updates
• Creates a certificate mapping AGUID to the

most recent VGUID.
• Client can verify most recent using a nonce.
• Response contains nonce, is signed.



Archiving

• Replication is space-inefficient.
• Erasure codes (Cauchy-Reed-Solomon):

• split a block into m fragments
• encode into n > m fragments
• any m of the n can reconstruct the file

• Fragments are distributed uniformly
deterministically based on BGUID and
fragment number



Caching

• To locate a block, look up its BGUID
• On failure, use fragments to reconstruct
• After reconstructing, publishes ownership

• Future readers can use this copy
• Discarded whenever convenient

• And unpublished from Tapestry



Performance
Local Archive Performance

• Reconstruction is within 1.7 times of
reading a remote replica.



Performance
Local Throughput

• Computationally limited by inner ring



Performance
Wide Area Throughput

IR Location Client Location Throughput (MB/s)
Cluster Cluster 2.59
Cluster PlanetLab 1.22
Bay Area PlanetLab 1.19

• Local cluster
• Reconstruction is within 1.7 times of

reading a remote replica.



Performance
Archive Performance

• Local cluster
• Reconstruction is within 1.7 times of

reading a remote replica.



Performance
Andrew Benchmark

Times in seconds

• NFS Loopback on Oceanstore vs. NFS
• NFS faster on LAN, slower on WAN.

• Less computation, less efficient network



Key Points

• Versioned data model
• Updates are by CoW
• Simplifies caching

• Byzantine agreement for primary copy
• No single point of failure

• Erasure-coded archive for durability
• Provides space-efficient storage



Summary

• Tradeoffs in large filesystems
• GFS

• Centralized Master
• Trusted Nodes
• Weak consistency

• Pond
• Fully distributed
• Untrusted Nodes
• Efficient long-term storage


	Large Filesystems
	GFS
	Pond

