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Distributed Hash Tables

• DHTs are decentralized distributed systems 
providing hash-table-like lookup service

• Ideal substrate for distributed applications

(distributed file systems, peer-to-peer file sharing , 

cooperative web caching, etc.)

– Efficient lookup

– Minimal cost of fault tolerance

– Extreme scalability





• Motivated by peer-to-peer systems research 
(Napster, Gnutella, Freenet)
– Napster: central index server

– Gnutella: flooding query model

– Freenet: fully distributed, but employed a heuristic key based routing

• Uses a more structured key based routing
– The decentralization of Gnutella and Freenet

– The efficiency and guaranteed results of Napster

– One drawback : only directly support exact-match search, rather than 
keyword search

• Chord, CAN, Pastry, and Tapestry (2001)

DHT History



Agenda

• Chord: A Scalable Peer-to-Peer Lookup Service 
for Internet Applications (SIGCOMM’01)

• The Impact of DHT Routing Geometry on 
Resilience and Proximity (SIGCOMM’03)



Chord: A Scalable Peer-to-Peer Lookup 
Service for Internet Applications

Ion Stoica (UC Berkeley)  Robert Morris (MIT)   David Karger (MIT)              

M. Frans Kaashoek (MIT)   Hari Balakrishnan (MIT)



Takeaway Points

Chord:
• Provides peer-to-peer hash lookup service

• Simple Geometry (Ring)

• Efficient: O(log N) messages per lookup

• Robust: as nodes fail and join

• Good substrate for peer-to-peer systems



Outline

• What is Chord?

• Chord hash lookup

• Maintain routing table

• Simulation



Problem

• Core operation in peer-to-peer systems

– The lookup problem: to efficiently locate the node 
that stores a particular data item



What is

• Definition:
– A scalable distributed protocol for peer-to-peer lookup

• Operation:
– Supports only one operation: given a key, it maps the 

key onto a node

• Functionality:
– Solves problem of locating a data item in a collection of 

distributed nodes, considering frequent node’s joins 
and leaves

http://pdos.csail.mit.edu/chord/



Design Objectives

• Load Balance

• Decentralization

• Scalability

• Availability

• Flexible Naming



Application Support

• IP Address = Lookup(key)

• Notification

• Example :  Cooperative Mirroring



Outline

• What is Chord?

• Chord hash lookup

• Maintain routing table

• Simulation



Identifier Space

• m-bit identifier space

– Key identifier = SHA-1(key)

– Node identifier = SHA-1(IP address)

• Successor

– The node with next higher ID of the current key or 
node



How to map key IDs onto node IDs?

• Consistent Hashing:

A key is stored at its
successor 



Scalable Key Location

• Finger Table



Scalable Key Location (con.)

• Each node knows m other nodes in the ring



Scalable Key Location (con.)



Scalable Key Location (con.)

• Lookups take O(log N) hops



Outline

• What is Chord?

• Chord hash lookup

• Maintain routing table

• Simulation



Stabilizing

• Functionality:

– To handle concurrent node joins/fails/leaves

• Operation:

– Keep successor pointers up to date, then verify 
and correct finger table entries

– Nodes periodically run stabilization protocol



Node Joins



Failure Recovery

Successor Lists:

• Each node knows r immediate successors

• After failure, will know first live successor

• Correct successors guarantee correct lookups

• Guarantee is with some probability

– Can choose r to make probability of lookup failure 
arbitrarily small



Outline

• What is Chord?

• Chord hash lookup

• Maintain routing table

• Simulation



Simulation

• Network Scale:

– 104 nodes & 105 to 106 keys

• Chord Implementation:

– Iterative (Recursive)

• Results confirm theoretical analysis:

– Efficiency

– Scalability

– Robustness



Path Length

Lookup Cost is O(log N)

PL as a function of Network Size   PDF of the PL in the case of a 212 node network



Failed Lookups -- Failed Nodes



Failed Lookups – Node Fail/Join Rate



Experimental Results

• Chord Prototype



Chord Summary

• Chord provides peer-to-peer hash lookup service
• Efficient: 

– O(log N) messages per lookup

• Scalable: 
– O(log N) states per node

• Robust: 
– Survives massive failures, joins or leaves

• Good primitive for peer-to-peer systems

Limitations:
• No anonymity ( Chord designates nodes for data items)
• Network locality is not well exploited



The Impact of DHT Routing Geometry on 
Resilience and Proximity

Krishna Gummadi (MPI-SWS)       Ramakrishna Gummadi (USC) 

Steven Gribble (U Washington)     Sylvia Ratnasamy (Intel)

Scott Shenker (UC Berkeley)            Ion Stoica (UC Berkeley)



Takeaway Points

• Comparison of Different Geometries 

– Ring, Tree, Hypercube, Butterfly, XOR

• Flexibility

– Flexibility Neighbor Selection (FNS)

– Flexibility Routing Selection (FRS)

• Static Resilience

• Path Latency

– Proximity methods (PRS & PNS)



Outline

• DHTs Design

• Static Resilience

• Proximity



Motivation

• New DHTs constantly proposed

• Isolated analysis

Goals:
• Separate fundamental design choices from 

algorithmic details

• Understand the impact of different DHT 
routing geometries on reliability and 
efficiency



Component-based Analysis

• Break DHT design into independent 
components 

– Routing-level: neighbor & route selection

– System-level: caching, replication, querying policy 
etc.

• Analyze impact of each component choice 
separately compare with black-box analysis



Geometry & Algorithm

• Algorithm : exact rules for selecting neighbors, 
routes
– Chord, CAN, Tapestry, Pastry, etc.

• Geometry : an algorithm’s underlying 
structure that inspires a DHT design
– Distance function is the formal representation of 

Geometry

– Many algorithms can have same geometry:
• Chord, Symphony => Ring



Comparison



Flexibility

• The algorithmic freedom left after the 
geometry is chosen
– Neighbor selection

• FNS: number of node choices for a neighbor

– Route selection
• FRS: average number of route choices for a destination

Geometry => Flexibility => Performance



Outline

• DHTs Design

• Static Resilience

• Proximity



Static Resilience

• Resilience: 
– Robust Routing

• Static Resilience:
– One of the three aspects of resilience
– We keep the routing table static (except for deleting 

failed nodes)
– Measures the extent to which DHTs can route around 

trouble 

• Evaluation metrics:
– % paths failed
– % increase in path length



Static Resilience & Geometries



Flexibility 

=> Static Resilience



Outline

• DHTs Design

• Static Resilience

• Proximity



Path Latency

• DHTs are designed to route effectively in terms of 
hopcount

• End-to-end latency issues approached through proximity 
methods

– Proximity Neighbor Selection (PNS): neighbors are chosen based 
on proximity

– Proximity Route Selection (PRS): the choice of next-hop when 
routing to a destination depend on the proximity of neighbors

– *Proximity Identifier Selection (PIS)



Proximity

• Goal: Minimize end-to-end overlay path 
latency

• Both PNS and PRS can reduce latency
– Tree supports PNS, Hypercube  supports PRS, Ring & XOR 

have both



• Plain  <<   PRS   <<  PNS ≈ PNS+PRS

PNS or PRS?



Does Geometry Matter?



Proximity Summary

• Both addressed path latency issues

• Performance

• Independency



Flexibility 

=> Path Latency



Limitations

• Geometry?

– a distance function on an identifier space

• Other factors of DHTs?

– Algorithmic details, symmetry in routing table entries

• Completeness?
– Other DHT algorithms



Conclusion

• Routing Geometry is a fundamental design 
choice

– Geometry => Flexibility

– Flexibility => Performance (Resilience & Proximity)

• Ring has the greatest flexibility

– Great routing performance

Why not the Ring?



Thank You!


