Peer to Peer

Presented by

Bo Peng
(bpeng@cs.cornell.edu)

OCT 22 2009

Distributed Hash Tables

 DHTs are decentralized distributed systems
providing hash-table-like lookup service

* |deal substrate for distributed applications

(distributed file systems, peer-to-peer file sharing,
cooperative web caching, etc.)

— Efficient lookup

— Minimal cost of fault tolerance

— Extreme scalability

Data

Hash
function

Hash
function

Hash
function

Key

Distributed
Network

DHT History

* Motivated by peer-to-peer systems research
(Napster, Gnutella, Freenet)

— Napster: central index server
— Gnutella: flooding query model

— Freenet: fully distributed, but employed a heuristic key based routing

* Uses a more structured key based routing
— The decentralization of Gnutella and Freenet
— The efficiency and guaranteed results of Napster

— One drawback : only directly support exact-match search, rather than
keyword search

* Chord, CAN, Pastry, and Tapestry (2001)

Agenda

* Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications (SIGCOMM’01)

* The Impact of DHT Routing Geometry on
Resilience and Proximity (SIGCOMM’03)

Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications

lon Stoica (uc Berkeley) Robert Morris (miT) David Karger (mim)

Takeaway Points

Chord:

* Provides peer-to-peer hash lookup service
* Simple Geometry (Ring)

* Efficient: O(log N) messages per lookup

* Robust: as nodes fail and join

* Good substrate for peer-to-peer systems

Outline

* Chord hash lookup
* Maintain routing table
* Simulation

Problem

Core operation in peer-to-peer systems

— The lookup problem: to efficiently locate the node
that stores a particular data item

Key="title"
‘alue=MP3 data_

Publishen——— T Client

Lookup("title"]

Whatis \C (YO N O

* Definition:
— A scalable distributed protocol for peer-to-peer lookup
* QOperation:

— Supports only one operation: given a key, it maps the
key onto a node

* Functionality:

— Solves problem of locating a data item in a collection of
distributed nodes, considering frequent node’s joins
and leaves

http://pdos.csail. mit.edu/chord/

Design Objectives

Load Balance
Decentralization
Scalability
Availability
Flexible Naming

Application Support

e |P Address = Lookup(key)
* Notification
 Example : Cooperative Mirroring

3 File System

i Block Store : : Block Store : : Block Store

Chord : i Chord : i Chord

) | | | |
Client | | Server | | Server

Outline

e What is Chord?

* Maintain routing table
* Simulation

ldentifier Space

* m-bit identifier space
— Key identifier = SHA-1(key)
— Node identifier = SHA-1(IP address)

 Successor

— The node with next higher ID of the current key or
node

How to map key IDs onto node IDs?

* Consistent Hashing:

Node 105

A key is stored at its
successor

N105

N90

Key 5——, K5

K80

Circular 7-bit

ID space

N30

K20

J

N32

N52

Scalable Key Location

* Finger Table

Notation Definition
fingerk).start | (n +2""Hmod2™, 1<k <m
.interval fingerlk|.start, fingerlk + 1].start)
node first node > n.finger{k].start
SUCCESSor the next node on the identifier circle;
finger{1].node
predecessor the previous node on the 1dentifier circle

Scalable Key Location (con.)

* Each node knows m other nodes in the ring

Bl
n

Scalable Key Location (con.)

N120
12—,
vy

Scalable Key Location (con.)

* Lookups take Oflog N) hops

N5

N110

N99

N80

N10

N60

K19
W\ [hz

— || N32

Lookup(K19)

Outline

* What is Chord?
* Chord hash lookup

e Simulation

Stabilizing

* Functionality:
— To handle concurrent node joins/fails/leaves
* Operation:

— Keep successor pointers up to date, then verify
and correct finger table entries

— Nodes periodically run stabilization protocol

Node Joins

N25 N25
N36 2. N36 sets its own N36
successor pointer

1. Lookup(36) <30 * 30
N40 (38 N40 K38

N25 N25
.

3. Set N25's successor N36 4. Copy keys 26..36 N36 | K30
pointer from N40 to N36 s
N4o | K30 N40 | K38
K38

Failure Recovery

Successor Lists:

 Each node knows r immediate successors

e After failure, will know first live successor

* Correct successors guarantee correct lookups
* Guarantee is with some probability

— Can choose r to make probability of lookup failure
arbitrarily small

Outline

 What is Chord?
* Chord hash lookup
* Maintain routing table

Simulation

* Network Scale:
— 10% nodes & 10° to 10° keys

* Chord Implementation:

— |terative (Recursive)

* Results confirm theoretical analysis:
— Efficiency
— Scalability
— Robustness

Path length

Path Length

PL as a function of Network Size
12

. — ‘ —
1st and 99th percentiles =—
10 -
8 [
<
6 G
o
4 [
0 ' L M| ' ' | ' ' | ' L | L ' L
1 10 100 1000 10000 100000

Number of nodes

Lookup Cost is O(log N)

PDF of the PL in the case of a 212 node network

0.25

0.2 -

0.1

0.05

0

SN

\

0

6
Path length

2

Failed Lookups -- Failed Nodes

0.25 T T T
95% confidence interval —&—

02 - A} B
]
g
[-~
5 e
5 015 f {, .
5 L
@
g
@ s
I3 -
=] =
3 01} -
] : -
| -
8 A
B
= P
w e

0.05 - {, .

. -
0 | | | |
0] 0.05 0.1 0.15 0.2

Failed Nodes (Fraction of Total)

Failed Lookups — Node Fail/Join Rate

0.08 T T T

95% cclmfidence interval :—e—|

0.07 - B

0.06 .

0.05 .

0.04 | N

0.03 | .

Failed Lookups (Fraction of Total)

0.02 - -~ N

0.01 -) % .
0 % 1 1 1 1 1

0] 0.02 0.04 0.06 0.08 0.1
Node Fail/Join Rate (Per Second)

Experimental Results

* Chord Prototype

700 T T T T T

I T e —

600 | -

500 .

400 | -

300 - [n

Lookup Latency (ms)

200F $oeeef .

100 +) -

[} | 1 1 1 1 1 1 | 1
0 20 40 60 80 100 120 140 160 180 200

Mumber of Modes

Chord Summary

* Chord provides peer-to-peer hash lookup service

e Efficient:

— O(log N) messages per lookup
* Scalable:

— O(log N) states per node

* Robust:
— Survives massive failures, joins or leaves

* Good primitive for peer-to-peer systems

Limitations:
 No anonymity (Chord designates nodes for data items)
* Network locality is not well exploited

The Impact of DHT Routing Geometry on
Resilience and Proximity

Krishna Gummadi (vpi-sws) Ramakrishna Gummadi (usc)

Scott S

Takeaway Points

Comparison of Different Geometries
— Ring, Tree, Hypercube, Butterfly, XOR
Flexibility

— Flexibility Neighbor Selection (FNS)

— Flexibility Routing Selection (FRS)
Static Resilience

Path Latency
— Proximity methods (PRS & PNS)

Outline

e Static Resilience
* Proximity

Motivation

* New DHTs constantly proposed
* |solated analysis

Goals:

* Separate fundamental design choices from
algorithmic details

 Understand the impact of different DHT
routing geometries on reliability and
efficiency

Component-based Analysis

 Break DHT design into independent
com ponents
— Routing-level: neighbor & route selection
— System-level: caching, replication, querying policy
etc.

* Analyze impact of each component choice
separately compare with black-box analysis

Geometry & Algorithm

* Algorithm : exact rules for selecting neighbors,
routes

— Chord, CAN, Tapestry, Pastry, etc.

* Geometry : an algorithm’s underlying
structure that inspires a DHT design

— Distance function is the formal representation of
Geometry

— Many algorithms can have same geometry:
e Chord, Symphony => Ring

Comparison

Geometry Algorithm
Ring Chord, Symphony
Hypercube CAN
Tree Plaxton
Butterfly Viceroy
Tr::[ib-[iclj?;g Tapestry, Pastry
d(id1, idZ)ic?; XOR id2 Kademla

Flexibility

* The algorithmic freedom left after the
geometry is chosen
— Neighbor selection

* FNS: number of node choices for a neighbor

— Route selection
* FRS: average number of route choices for a destination

property tree | hypercube | ring | butterfly | xor hybrid
Neighbor Selection n o8/ 1 noen/? 1 n °8"/2 p 08"/
Route Selection 1 ci(logn) | ei(logn) 1 1 1

Geometry => Flexibility => Performance

Outline

* DHTs Design

* Proximity

Static Resilience

* Resilience:
— Robust Routing

 Static Resilience:
— One of the three aspects of resilience

— We keep the routing table static (except for deleting
failed nodes)

— Measures the extent to which DHTs can route around
trouble

 Evaluation metrics:

— % paths failed
— % increase in path length

Failed paths (%)

100

80

60

40

20

Static Resilience & Geometries

P Ring ---x---

XOR —+— -+

Buterfly B -
Hypercube --m--
Hybrid - - -

Failed nodes (%)

60 70 80 90

Increase in Avg. path hop-counts (%%

oo
=
T

(=]
=

=
=

[
=

XOR ——
___x___
Hypercube ---&--
Hybrid --m--

Failed nodes (%)

Flexibility
=> Static Resilience

Outline

* DHTs Design
 Static Resilience

Path Latency

 DHTs are designed to route effectively in terms of
hopcount

* End-to-end latency issues approached through proximity

methods
— Proximity Neighbor Selection (PNS): neighbors are chosen based
on proximity
— Proximity Route Selection (PRS): the choice of next-hop when
routing to a destination depend on the proximity of neighbors

— *Proximity ldentifier Selection (PIS)

Proximity

e Goal: Minimize end-to-end overlay path
latency

* Both PNS and PRS can reduce latency

— Tree supports PNS, Hypercube supports PRS, Ring & XOR
have both

CDF

PNS or PRS?

100 ——— :] 100 I s
I _— g 80 - / P
70 F , :;;}"] 70 F !fj e _
60 (/ . 60 / .
0F i/ 1 & s0f / -

! O /
40 -/ . 40 - 1 .
3 L] Plain XOR —— ol 1
i PNS XOR ------- f Plain Ring ——
20 [PRSXOR -~ . 20) PNSRing ------- .
10 b . PNS+PRS XOR - i 10 i PRSRing ------- i
i Internet / PNS+PRS Ring
L e | | | [—— | | | |
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000

Latency (msec) Latency

e Plain << PRS << PNS = PNS+PRS

CDF

100
90
80
70
60
50
40
30
20
10

Does Geometry Matter?

| e e
| J,"’." .:'_:;" ;.#
u r' 7
- j ’ PNS+PRS Ring
u i PNS+PRS XOR
o PNS Ring --------
= ii PNS Tree
A PRS Ring --—-—
g__i-“.'f' | | IF"FES H}fpﬂrClile
0 400 800 1200 1600

Latency

Proximity Summary

* Both addressed path latency issues
* Performance
* Independency

Flexibility
=> Path Latency

Limitations

e Geometry?
— a distance function on an identifier space

e Other factors of DHTs?
— Algorithmic details, symmetry in routing table entries

e Completeness?
— Other DHT algorithms

Conclusion

* Routing Geometry is a fundamental design
choice

— Geometry => Flexibility
— Flexibility => Performance (Resilience & Proximity)

* Ring has the greatest flexibility

— Great routing performance

Why not the Ring?

Thank You!

