
Haoyuan Li
CS 6410 Fall 2009

10/15/2009

  U-Net: A User-Level Network Interface for
Parallel and Distributed Computing
◦  Thorsten von Eicken, Anindya Basu, Vineet Buch,

and Werner Vogels

  Active Messages: a Mechanism for Integrated
Communication and Computation
◦  Thorsten von Eicken, David E. Culler, Seth Copen

Goldstein, and Klaus Erik Schauser

  Thorsten von Eicken

  Werner Vogels

  David E. Culler

  Seth Copen Goldstein

  Klaus Erik Schauser

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Processing Overhead
◦  Fabrics bandwidth vs. Software overhead

  Flexibility
◦  Design new protocol

  Small Message
◦  Remote object executions
◦  Cache maintaining messages
◦  RPC style client/server architecture

  Economic driven
◦  Expensive multiprocessors super computers with custom

network design
◦  vs.
◦  Cluster of standard workstations connected by off-the-

shelf communication hardware

  Provide low-latency communication in local
area setting

  Exploit the full network bandwidth even with
small message

  Facilitate the use of novel communication
protocols

  All built on CHEAP hardware!

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Communication 
Segments

  Send queue
  Receive Queue
  Free Queue

  Send and Receive packet
  Multiplexing and demultiplexing messages
  Zero-copy vs. true Zero-copy
  Base-Level U-Net
  Kernel emulation of U-Net
  Direct-Access U-Net

networ
k

  Prepare packet and place it in the
Communication segment

  Place descriptor on the Send queue
  U-Net takes descriptor from queue
  transfers packet from memory to network

packet U-Net
NI

From Itamar Sagi

networ
k

  U-Net receives message and decide which Endpoint
to place it

  Takes free space from Free Queue
  Place message in Communication Segment
  Place descriptor in receive queue
  Process takes descriptor from receive queue

(polling or signal) and reads message

packet
U-Net

NI

From Itamar Sagi

  Channel setup and memory allocation
  Communication Channel ID
  Isolation Protection

  True Zero-copy: No intermediate buffering
◦  Direct-Access U-Net
  Communication segment spans the entire process

address space
  Specify offset where data has to be deposited

  Zero-copy: One intermediate copy into a
networking buffer
◦  Base-Level U-Net
  Communication segment are allocated and pinned to

physical memory
  Optimization for small messages
◦  Kernel emulation of U-Net
  Scarce resources for communication segment and

message queues

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  SPARCstations
  SunOS 4.1.3
  Fore SBA-100 and Fore SBA-200 ATM interfaces by

FORE Systems, now part of Ericsson

  AAL5

  Onboard processor
  DMA capable
  AAL5 CRC generator
  Firmware changed to implement U-Net NI on the

onboard processor

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Active Messages
◦  A mechanism that allows efficient overlapping of

communication with computation in
multiprocessors

  Implementation of GAM specification over U-
Net

  Split C based on UAM
  Vs.
  CM-5
  Meiko CS-2

  Block matrix multiply
  Sample sort (2 versions)
  Radix sort (2 versions)
  Connected component algorithm
  Conjugate gradient solver

TCP max bandwidth UDP max bandwidth

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  U-Net main objectives achieved:
◦  Provide efficient low latency communication
◦  Offer a high degree of flexibility

  U-Net based round-trip latency for messages
smaller than 40 bytes: Win!

  U-Net flexibility shows good performance on
TCP and UDP protocol

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Minimize communication overhead
  Allow communication to overlap computation
  Coordinate the two above without sacrificing

processor cost/performance

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Mechanism for sending messages
◦  Message header contains instruction address
◦  Handler retrieves message, cannot block, and no

computing
◦  No buffering available

  Making a simple interface to match hardware
  Allow computation and communication

overlap

  Sender asynchronous sends a message to a
receiver without blocking computing

  Receiver pulls message, integrates into
computation through handler
◦  Handler executes without blocking
◦  Handler provides data to ongoing computation, but

not does any computation

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  3-Phase Protocol
  Simple
  Inefficient
  No buffering needed

  Communication can have overlap with
computation

  Buffer space allocated throughout
computation

  Extension of C for SPMD Programs
◦  Global address space is partitioned into local and

remote
◦  Maps shared memory benefits to distributed

memory
◦  Split-phase access

  Active Messages serve as interface for Split-C

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  To support languages with dynamic
parallelism

  Integrate communication into the processor
  Computation is driven by messages, which

contain the name of a handler and some data
  Computation is within message handlers
  May buffer messages upon receipt
◦  Buffers can grow to any size depending on amount

of excess parallelism
  Less locality

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Network Interface Support
◦  Large messages
◦  Message registers
◦  Reuse of message data
◦  Single network port
◦  Protection
◦  Frequent message accelerators

  Processor Support
◦  Fast polling
◦  User-level interrupts
◦  PC injection
◦  Dual processors

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Asynchronous communication
  No buffering
  Improved Performance
  Handlers are kept simple

