
Networking
(from an OS perspective)

Yin Lou

10/08/2009

Outline

• Background

• TCP Review

• Congestion Avoidance and Control

• TCP Congestion Control with a Misbehaving
Receiver

• Summary

Background

• IEEE: “A Protocol for Packet Network Interconnection.”

– In May, 1974

• Vint Cerf and Bob Kahn

– Turing Award
• "pioneering work on internetworking, including .. the Internet's

basic communications protocols .. and for inspired leadership in
networking."

– “The father of the Internet”

Background

Outline

• Background

• TCP Review

• Congestion Avoidance and Control

• TCP Congestion Control with a Misbehaving
Receiver

• Summary

OSI Levels

TCP Review

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Node A Node B

Router

Overview

• Connection-oriented

– Handshaking before data exchange

• Reliable, ordered, byte-stream protocol

• Full duplex data

– bi-directional data flow in same connection

– MSS: maximum segment size

• Flow controlled

– Sender will not overwhelm receiver

TCP Review

Sender Events

Event at Sender

Data received from app

Timeout

ACK received

TCP Sender action

Create segment with seq. #

Start timer if not already running

Retransmit segment that caused

timeout

Restart timer

If acknowledges previously unacked

segments
Update what is known to be acked

Start timer if there are outstanding segments

TCP Review

Retransmission
Host A

lossti
m

eo
u

t

Lost ACK scenario

Host B

X

time

SendBase
= 100

TCP Review

Retransmission

TCP Review

Host A

time
Premature timeout

Host B

Se
q

=9
2

 t
im

eo
u

t
Se

q
=9

2
 t

im
eo

u
t

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Retransmission

TCP Review

Host A

lossti
m

eo
u

t

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Receiver Events

Event at Receiver

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP Receiver action

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

TCP Review

Fast Retransmission

• Long time-out period
– long delay before resending lost packet

• Detect lost segments via duplicate ACKs
– Sender often sends many segments back-to-back

– If segment is lost, there will likely be many
duplicate ACKs

• 3 ACKs indicates a segment loss
– fast retransmit: resend segment before timer

expires

TCP Review

Outline

• Background

• TCP Review

• Congestion Avoidance and Control

• TCP Congestion Control with a Misbehaving
Receiver

• Summary

Congestion Avoidance and Control

• Motivation

– Data throughput from LBL to UC Berkeley dropped
from 32Kbps to 40 bps (factor-of thousand drop)
in Oct.’86

• Conservation of packets

– Connection “in equilibrium”: running stably with a
full window of data in transit

– Packet flow “conservative”: A new packet isn’t put
into the network until an old packet leaves.

Congestion Avoidance and Control

4BSD TCP

• slow-start

• round-trip-time variance estimation

• exponential retransmit timer backoff

• more aggressive receiver ACK policy

• dynamic window sizing on congestion

• Karn’s clamped retransmit backoff

• fast retransmit

Congestion Avoidance and Control

Packet Conservation to Fail

1. The connection doesn’t get to equilibrium

2. A sender injects a new packet before an old
packet has exited

3. The equilibrium can’t be reached because of
resource limits along the path

Congestion Avoidance and Control

Getting to Equilibrium: Slow Start

• When connection begins, cwnd =
1 MSS (congestion window)

• Increase rate exponentially until
first loss event
– double cwnd every RTT

– done by incrementing cwnd for
every ACK received

• Summary
– initial rate is slow but ramps up

exponentially fast

Congestion Avoidance and Control

Host A

R
T

T

Host B

time

Getting to Equilibrium: Slow Start

Congestion Avoidance and Control

Startup behavior of TCP without Slow-start

Getting to Equilibrium: Slow Start

Congestion Avoidance and Control

Startup behavior of TCP with Slow-start

Packet Conservation

1. The connection doesn’t get to equilibrium

2. A sender injects a new packet before an old
packet has exited

3. The equilibrium can’t be reached because of
resource limits along the path

Congestion Avoidance and Control

Conservation at Equilibrium: RTT

• EstimatedRTT = α * EstimatedRTT + (1 - α) * SampleRTT
– α = 0.9, filter gain constant

• Timeout Interval = β * EstimatedRTT
– Β = 2

• Common mistakes
– Not estimating the variation of the RTT

– A connection will respond to load increases by retransmitting packets
that have only been delayed in transit. Forces the network to do
useless work

Congestion Avoidance and Control

Conservation at Equilibrium: RTT

• EstimatedRTT = (1 - g) * EstimatedRTT + g * SampleRTT
– The paper suggests g = 0.125, the gain

• EstimtedRTT plus “safety margin”
– large variation in EstimatedRTT -> larger safety margin

• How much SampleRTT deviates from EstimatedRTT:
– DevRTT = 0.75* DevRTT + 0.25 * |SampleRTT-EstimatedRTT|

• Timeout Interval = EstimatedRTT + 4 * DevRTT

Congestion Avoidance and Control

Packet Conservation

1. The connection doesn’t get to equilibrium

2. A sender injects a new packet before an old
packet has exited

3. The equilibrium can’t be reached because of
resource limits along the path

Congestion Avoidance and Control

Adapting to the Path: Congestion Avoidance

• Packets get lost for two reasons:

– Damaged in transit (<< 1%)

– Network is congested and somewhere on the path there
was insufficient buffer capacity

• Congestion avoidance strategy:

– Network must be able to signal the transport endpoints

– The endpoints must have a policy

Congestion Avoidance and Control

Adapting to the Path: Congestion Avoidance

• On no congestion (Additive Increase):

– cwndi = cwndi-1 + u (u << cwndmax)

– The paper suggests u = 1

• On congestion (Multiplicative Decrease):

– cwndi = d * cwndi-1 (d < 1)

– The paper suggests d = 0.5

Congestion Avoidance and Control

Adapting to the Path: Congestion Avoidance

• The combined slow-start with congestion avoidance algorithm

• Additive increase / Multiplicative decrease (AIMD)

Congestion Avoidance and Control

Summary

• Slow start

• RTT estimation

• Congestion avoidance algorithm (AIMD)

Congestion Avoidance and Control

Outline

• Background

• TCP Review

• Congestion Avoidance and Control

• TCP Congestion Control with a Misbehaving
Receiver

• Summary

TCP Congestion Control with A Misbehaving Receiver

• Misbehaving receiver can achieve the same result of the
misbehaving sender
– Less obviously compared to a misbehaving sender

• TCP’s vulnerabilities arise from a combination of:
– unstated assumptions

– casual specification

– a pragmatic need to develop congestion control mechanisms that are
backward compatible with previous TCP implementations

TCP Congestion Control with A Misbehaving Receiver

Misbehaving Receiver – ACK Division

• RFC 2581:
– During slow start, TCP increments cwnd by at most MSS bytes for each

ACK received that acknowledges new data.

– During congestion avoidance, cwnd is incremented by 1 full-sized
segment per round-trip-time (RTT).

• Attack 1:
– Receive a data segment containing N bytes

– Receiver divides the resulting acknowledgement into M, where M ≤ N,
separate acknowledgements

– each covering one of M distinct pieces of the received data segment.

TCP Congestion Control with A Misbehaving Receiver

Misbehaving Receiver – ACK Division

• Growing cwnd at a rate
that is M times faster

TCP Congestion Control with A Misbehaving Receiver

Misbehaving Receiver – DupACK Spoofing

• RFC 2581:
– (Fast recovery) Set cwnd to ssthresh plus 3*MSS. This artificially

"inflates" the congestion window by the number of segments(three)
that have left the network and which the receiver has buffered.

– For each additional duplicate ACK received, increment cwnd by MSS.
This artificially inflates the congestion window in order to reflect the
additional segment that has left the network.

• Problems:
– It assumes that each segment that has left the network is full sized

– TCP requires that duplicate ACKs be exact duplicates, there is no way
to ascertain which data segment they were sent in response to.

TCP Congestion Control with A Misbehaving Receiver

Misbehaving Receiver – DupACK Spoofing

• Attack 2:
– Receive a data segment

– The receiver sends a long
stream of acknowledgements
for the last sequence number
received.

TCP Congestion Control with A Misbehaving Receiver

Misbehaving Receiver – Optimistic ACKing

• Problems:
– TCP’s algorithm assumes that the time between a data segment being

sent and an acknowledgement for that segment returning is at least
one round-trip time.

– But the protocol does not use any mechanism to enforce its
assumption.

• Attack 3:
– Receive a data segment

– The sender sends a stream of acknowledgements anticipating data
that will be sent by the sender.

TCP Congestion Control with A Misbehaving Receiver

Misbehaving Receiver – Optimistic ACKing

TCP Congestion Control with A Misbehaving Receiver

• Data from the sender
which is lost may be
unrecoverable since it
has already been ACKed.

Solutions – ACK division

• Modify the congestion control mechanisms to operate at byte
granularity

• Guarantee that segment-level granularity is always respected
– Perhaps simpler

– Only increment cwnd by one MSS when a valid ACK arrives that covers
the entire data segment sent.

TCP Congestion Control with A Misbehaving Receiver

Solutions – ACK division

TCP Congestion Control with A Misbehaving Receiver

Solutions – DupACK Spoofing

• Traditional method: Singular Nonce
– Two new fields introduced into the TCP packet format: Nonce and

Nonce reply.

– For each segment, the sender fills the Nonce field with a unique
random number generated when the segment is sent.

• The solution requires the modification of clients and servers
and the addition of a TCP field.
– Sender maintains a count of outstanding segments sent above the

missing segment

– For each duplicate acknowledgement this count is decremented

– When it reaches zero any additional duplicate ACKs are ignored.

TCP Congestion Control with A Misbehaving Receiver

Solutions – DupACK Spoofing

TCP Congestion Control with A Misbehaving Receiver

Solutions – Optimistic ACKing

• Well addressed using nonce
– Single nonce is imperfect:

does not mirror the
cumulative nature of TCP.

• Cumulative Nonce

TCP Congestion Control with A Misbehaving Receiver

Solutions – Optimistic ACKing

TCP Congestion Control with A Misbehaving Receiver

Different TCP Implementations

TCP Congestion Control with A Misbehaving Receiver

Outline

• Background

• TCP Review

• Congestion Avoidance and Control

• TCP Congestion Control with a Misbehaving
Receiver

• Summary

Summary

• Congestion Avoidance and Control

– Slow start

– RTT estimation: Timeout Interval

– Congestion avoidance

• Misbehaving Receiver

– ACK division

– DupACk spoofing

– Optimistic ACKing

Summary

Thank You

