
Deniz Altinbuken

09/29/09

Multiprocessors



End of Moore’s Law?



Multi-Core vs. Multi-Processor

Multi-Core Processor with Shared L2 

Cache

Multi-Processor System with Cores that share 

L2 Cache



Processor Organizations

Single Instruction, 

Single Data Stream 

(SISD)

Single Instruction, 

Multiple Data 

Stream (SIMD)

Multiple Instruction, 

Single Data Stream 

(MISD)

Multiple Instruction, 

Multiple Data Stream 

(MIMD)

Uniprocessor Vector 

Processor

Array 

Processor

Shared 

Memory

Distributed 

Memory

Symmetric 

Multiprocessor

Non-uniform 

Memory 

Access

Clusters



Shared Memory Access

Non-uniform memory access

• Different processors access different 

regions of memory at different speeds

Uniform memory access
• Access time to all regions of memory 

the same

• Access time by all processors the 

same



Why Multiprocessors?
 Goal: Taking advantage of the resources in parallel

 Scalability

• Ability to support large number of processors

 Flexibility

• Supporting different architectures

 Reliability and Fault Tolerance

• Providing Cache Coherence

 Performance

• Minimizing Contention, Memory Latencies, Sharing Costs

What is crucial?



Approaches

 DISCO (1997)

• Using a software layer between the hardware and multiple 

virtual machines that run independent operating systems.

 Tornado (1999)

• Using an object-oriented structure, where every virtual and 

physical resource in the system is represented by an 

independent object



DISCO: Running Commodity Operating 

Systems on Scalable Multiprocessors

Edouard Bugnion, Scott Devine

 Key members of the SimOS and Disco VM research teams

 Co-founders of VMware

 Ph.D. candidate in Computer Science at Stanford University

Mendel Rosenblum

 Key member of the SimOS and Disco VM research teams

 Co-founder of VMware

 Associate Professor of Computer Science at Stanford University



Virtual Machine Monitors

 Additional layer of software between the hardware and the 

operating system



Virtual Machine Monitors

• Virtualizes and manages all the resources so that multiple 

virtual machines can coexist on the same multiprocessor



VMware Architecture

System withoutVMware Software System withVMware Software



DISCO: Contributions

 Scalability

• Explicit memory sharing is allowed

 Flexibility

• Support for specialized OSs

 ccNUMA: Scalability and Fault-Containment

• Failures in the system software is contained in VM

 NUMA: Memory Management Issues

• Dynamic page migration and page replication



DISCO: Disadvantages

 Overheads

• Virtualization of the hardware resources

 Resource Management Problems

• The lack of high-level knowledge

 Sharing and Communication Problems

• Running multiple independent operating systems



DISCO: Interface

 Processors

• The virtual CPUs of DISCO provide the abstraction of a MIPS 

R10000 processor.

 Physical Memory

• Abstraction of main memory residing in a contiguous physical 

address space starting at address zero.

 I/O Devices

• Each I/O device is virtualized

• Special abstractions for the disk and network devices



DISCO: Implementation

 Implemented as a multi-threaded shared memory program

• NUMA memory placement

• cache-aware data structures

• inter-processor communication patterns

 Code segment of DISCO is replicated into all the memories 

of FLASH machine to satisfy all instruction cache misses 

from the local node.



DISCO: Virtual CPUs

Virtual Processor

Applicat

ion

Applicat

ion

Virtual Processor

Applicat

ion

Applicat

ion

DISCO

Real CPU

User Mode

Supervisor Mode

Kernel Mode

Saved registers

State

TLB Contents

Scheduler



DISCO: Virtual Physical Memory

 DISCO maintains physical-to-machine address mappings.

 The VMs use physical addresses, and DISCO maps them to 

machine addresses.

 DISCO uses the software-reloaded TLB for this.

 TLB must be flushed on virtual CPU switches; Disco caches 

recent virtual-to-machine translations in a second-level 

software TLB.



DISCO: NUMA Memory Management

 fast translation of the virtual machine’s physical addresses to 

real machine pages

 the allocation of real memory to virtual machines

 dynamic page migration and page replication system to 

reduce long memory accesses
• Pages heavily used by one node are migrated to that node
• Pages that are read-shared are replicated to the nodes most 

heavily accessing them
• Pages that are write-shared are not moved
• Number of moves of a page limited



DISCO: Transparent Page Replication

• Two different virtual processors of the same virtual machine read-share the same 

physical page, but each virtual processor accesses a local copy.

• memmap tracks which virtual page references each physical page.



DISCO: Virtual I/O Devices

 DISCO intercepts all device accesses from the VM and 

eventually forwards them to the physical devices.

 Installing drivers for DISCO I/O in the guest OS.

 DISCO must intercept DMA requests to translate the 

physical addresses into machine addresses. DISCO’s device 

drivers then interact directly with the physical device.

 All the virtual machines can share the same root disk 

containing the kernel and application programs.



DISCO: Copy-on-write Disks

Code Data Buffer Cache

Private

Pages

Code Data Buffer Cache

Data DataBuffer CacheCode

Shared

Pages

Free

Pages

Physical Memory of VM0 Physical Memory of VM1



DISCO: Virtual Network Interface
 Virtual subnet and network interface use copy-on-write 

mapping to share the read only pages

 Persistent disks can be accessed using standard system 
protocol NFS

 Provides a global buffer cache that is transparently shared by 
independent VMs



DISCO: Transparent Sharing of Pages 

Over NFS

• The monitor’s networking device remaps the data page from the source’s machine 

address space to the destination’s.

• The monitor remaps the data page from the driver’s mbuf to the client’s buffer 

cache. 



DISCO: Performance

 SimOS is configured to resemble a large-scale multiprocessor 

with performance characteristics similar to FLASH.

 The processors have the on-chip caches of the MIPS R10000 

(32KB split instruction/data) and a 1MB board-level cache.

 Simulation models are too slow for the workloads planned.



DISCO: Workloads



DISCO: Execution Overheads



DISCO: Memory Overheads



DISCO: Workload Scalability



DISCO: Page Migration and Replication



DISCO vs. Exokernel

 The Exokernel safely multiplexes resources between user-

level library operating systems. 

 Both DISCO and Exokernel support specialized operating 

systems.

 DISCO differs from Exokernel in that it virtualizes resources 

rather than multiplexing them, and can therefore run 

commodity operating systems without significant 

modifications.



Tornado: Maximizing Locality and 

Concurrency in a Shared Memory 

Multiprocessor Operating System

 Locality is as important as concurrency.

 Three Key Innovations:

• Clustered Objects

• New Locking Strategy

• Protected Procedure Call



Memory Locality Optimization

 minimizing read/write and write sharing so as to minimize 

cache coherence overheads

 minimizing false sharing

 minimizing the distance between the accessing processor and 

the target memory module



Tornado: Object Oriented Structure

HAT

Process

Region FCM

COR

Region FCM

COR

DRAM

HAT Hardware Address Translation

FCM File Cache Manager

COR Cached Object Representative

DRAM Memory manager

Page Fault 

Exception

Search for 

responsible 

Region

Fault Address 

to File Offset

Check if file 

in memory

File cached in Memory

Return addr of Physical Page Frame to 

Region, Ragion calls HAT to map the page.

File not cached in Memory

Request new physical page frame from 

DRAM and ask COR to fill the page. 



Tornado: Clustered Objects

Consistency preserved 

by coordination via 

shared memory or PPC



Tornado: CO Implementation

Translation 

Tables

store pointer to 

the responsible 

rep

reps created on 

demand when 

first accessed

First call is accepted by Global Miss Handler. Object 

Miss Handler creates a rep if necessary and installs it in the 

Translation Table. The call is restarted using this rep.



Tornado: A New Locking Strategy

 Aim is to minimize the overhead of locking instructions

 Lock contention is limited

 Encapsulating the locks in objects to limit the scope of locks

 Using clustered objects to provide multiple copies of a lock

 Semi-automatic garbage collection is employed

 A clustered object is destroyed only if 

 No persistent references exist

 All temporary references are eliminated Temporary references 

are clustered object 

references that are held 

privately by a single 

thread.

Persistent References 

are those stored in 

(shared) memory; they 

can be accessed by 

multiple threads.



Tornado: Protected Procedure Calls
 Objective: Providing locality and concurrency during IPC

 A PPC is a call from a client object to a server object

 Acts like a clustered object call

 On demand creation of server threads to handle calls

 Advantages of PPC

 Client requests are always serviced on their local processor

 Clients and servers share the processor in a manner similar to handoff 

scheduling

 There are as many threads of control in the server as client requests



Tornado: Performance

In-Core Page Fault Each worker thread accesses a set of in-core unmapped pages in 

independent memory regions.

File Stat Each worker thread repeatedly fstats an independent file.

Thread Creation Each worker successively creates and then joins with a child thread

n threads in 

one process

n processes, 

each with 

one thread



Conclusion

 DISCO

 Virtual Machine layer

 OS independent

 manages resources, optimizes sharing primitives, and mirrors 

the hardware

 Tornado

 Object Oriented Design

 flexible and extensible OS

 Locality addressed by clustered objects and PPC



Thank You..


